DAIKIN

suəłsイs bu！uol！！puoכ ৷！e

覆聚III－S

TABLE OF CONTENTS

1 Air-cooled selection procedure

1 Selection procedure VRVIII system based on cooling load 2
Indoor unit selection 2
Outdoor unit selection 2
Actual performance data 3
Selection example based on cooling load 3
2 Capacity correction ratio 5
VRVIII-S 5
VRVIII cooling only 7
VRVIII heat pump 13
VRVIII heat recovery 26
3 Integrated heating capacity coefficient 36
4 Refnet pipe systems 37
5 Example of Refnet piping layouts 47
6 Refrigerant pipe selection 48
VRVIII-S 48
VRVIII 49
VRVIII heat recovery 51
Piping thickness 54

1 Selection procedure VRVIII system based on cooling load

1-1 Indoor unit selection

Enter indoor unit capacity tables at given indoor and outdoor temperature.
Select the unit that the capacity is the nearest to and higher than the given load.

NOTE

1 Individual indoor unit capacity is subject to change by the combination. Actual capacity has to be calculated according to the combination by using outdoor units capacity table.

1-2 Outdoor unit selection

Allowable combinations are indicated in indoor unit combination total capacity index table.
In general, oudoor units can be selected as follows though the location of the unit, zoning and usage of the rooms should be considered.
The indoor and outdoor unit combination is determined that the sum of indoor unit capacity index is nearest to and smaller than the capacity index at 100% combination ratio of each outdoor unit. Up to 16 indoor units can be connected to one outdoor unit. It is recommended to choose a larger outdoor unit if the installation space is large enough.
If the combination ratio is higher than 100%, the indoor unit selection will have to be reviewed by using actual capacity of each indoor unit.

Indoor unit combination total capacity index table

Outdoor unit	Indoor unit combination ratio								
	130\%	120\%	110\%	100\%	90\%	80\%	70\%	60\%	50\%
RXYSQ4PV/RXYSQ4PYY	130	120	110	100	90	80	70	60	50
RXYSQ5PV/RXYSQ5PYY	162.5	150	137.5	125	112.5	100	87.5	75	62.5
RXYSQ6PV/RXYSQ6PY1	182	168	154	140	126	112	98	84	70

Outdoor unit	Indoor unit combination ratio								
	130\%	120\%	110\%	100\%	90\%	80\%	70\%	60\%	50\%
RX(Y)Q5P	162.5	150	137.5	125	112.5	100	87.5	75	62.5
RX(Y)Q8P/REYQ8P	260	240	220	200	180	160	140	120	100
RX(Y)Q10P/REYQ10P	325	300	275	250	225	200	175	150	125
RX(Y)Q12P/REYQ12P	390	360	330	300	270	240	210	180	150
RX(Y)Q14PA/REYQ14P	455	420	385	350	315	280	245	210	175
RX(Y)Q16PA/REYQ16P	520	480	440	400	360	320	280	240	200
RX(Y)Q18PA/REYQ18P	585	540	495	450	405	360	315	270	225
RXYQ20P(A)/REYQ20P	650	600	550	500	450	400	350	300	250
RXYQ22P(A)/REYQ22P	715	660	605	550	495	440	385	330	275
RXYQ24P(A)/REYQ24P	780	720	660	600	540	480	420	360	300
RXYQ26P(A)/REYQ26P	845	780	715	650	585	520	455	390	325
RXYQ28P(A)/REYQ28P	910	840	770	700	630	560	490	420	350
RXYQ30P(A)/REYQ30P	975	900	825	750	675	600	525	450	375
RXYQ32P(A)/REYQ32P	1,040	960	880	800	720	640	560	480	400
RXYQ34P(A)/REYQ34P	1,105	1,020	935	850	765	680	595	510	425
RXYQ36P(A)/REYQ36P	1,170	1,080	990	900	810	720	630	540	450
RXYQ38P(A)/REYQ38P	1,235	1,140	1,045	950	855	760	665	570	475
RXYQ40P(A)/REYQ40P	1,300	1,200	1,100	1,000	900	800	700	600	500
RXYQ42P(A)/REYQ42P	1,365	1,260	1,155	1,050	945	840	735	630	525
RXYQ44P(A)/REYQ44P	1,430	1,320	1,210	1,100	990	880	770	660	550
RXYQ46P(A)/REYQ46P	1,495	1,380	1,265	1,150	1,035	920	805	690	575
RXYQ48P(A)/REYQ48P	1,560	1,440	1,320	1,200	1,080	960	840	720	600
RXYQ50P(A)	1,625	1,500	1,375	1,250	1,125	1,000	875	750	625
RXYQ52P(A)	1,690	1,560	1,430	1,300	1,170	1,040	910	780	650
RXYQ54P(A)	1,755	1,620	1,485	1,350	1,215	1,080	945	810	675

Indoor unit capacity index

Model	20	25	32	40	50	63	71	80	100	125	200	250
Capacity index	20	25	31.25	40	50	62.5	71	80	100	125	200	250

1 Selection procedure VRVIII system based on cooling load
 1-3 Actual performance data

Use outdoor unit capacity tables

Determine the correct table according to the outdoor unit model and combination ratio.
Enter the table at given indoor and outdoor temperature and find the outdoor capacity and power input. The individual indoor unit capacity (power input) can be calculated as follows:
$I C A=\frac{O C A \times I N X}{T N X}$

ICA: Individual indoor unit capacity (power input)
OCA: Outdoor unit capacity (power input)
INX: Individual indoor unit capacity index
TNX: Total capacity index

Then, correct the indoor unit capacity according to the piping length.
If the corrected capacity is smaller than the load, the size of indoor unit has to be increased. Repeat the same selection procedure.

1-4 Selection example based on cooling load

1 Given

- Design condition

Cooling: indoor $20^{\circ} \mathrm{CWB}$, outdoor $33^{\circ} \mathrm{CDB}$

- Cooling load

Room	A	B	C	D	E	F	G	H
Load (kW)	2.9	2.7	2.5	4.3	4.0	4.0	3.9	4.2

- Power supply: 3-phase $380 \mathrm{~V} / 50 \mathrm{~Hz}$

2 Indoor unit selection
Enter indoor unit capacity table at:
$20^{\circ} \mathrm{CWB}$ indoor temperature
$33^{\circ} \mathrm{CDB}$ outdoor air temperature.
Selection results are as follows:

Room	A	B	C	D	E	F	G	H
Load (kW)	2.9	2.7	2.5	4.3	4.0	4.0	3.9	4.2
Unit size	25	25	25	40	40	40	40	
Capacity	3.0	3.0	3.0	4.8	4.8	4.8	4.8	

3 Outdoor unit selection

- Assume that the indoor and outdoor unit combination is as follows.
Outdoor unit: RXYQ10P
Indoor unit: FXCQ25M8 x 3, FXCQ40M8 x 5
- Indoor unit combination total capacity index $25 \times 3+40 \times 5=275$ (110 \%)

1 Selection procedure VRVIII system based on cooling load

1-4 Selection example based on cooling load

4 Actual performance data (50 Hz)

- Outdoor unit cooling capacity: 30.5kW (RXYQ10P, 110 \%)
- Individual capacity

| Capacity of FXCQ25M | $=30.5 \times \frac{25}{275}=2.77 \mathrm{~kW}$ |
| :--- | :--- | :--- |
| Capacity of FXCQ40M | $=30.5 \times \frac{40}{275}=4.44 \mathrm{~kW}$ |

Actual combination capacity

Room	A	B	C	D	E	F	G	H
Load (kW)	2.9	2.7	2.5	4.3	4.0	4.0	3.9	4.2
Unit size	25	25	25	40	40	40	40	40
Capacity	2.77	2.77	2.77	4.44	4.44	4.44	4.44	4.44

The unit size for room A has to be increased from 25 to 32 because the capacity is less than the load. For new combination, actual capacity is calculated as follows.

- Indoor unit combination total capacity index
$(25 \times 2)+31.25+(40 \times 5)=281.25(112.5 \%)$
- Outdoor unit cooling capacity:
$27,610 \mathrm{kcal} / \mathrm{h}$ (direct interpolation between 110% and 120% in the table)
- Individual capacity

Capacity of FXCQ25M	$=30.0 \times \underset{281.25}{\underline{25}}=2.7 \mathrm{~kW}$
Capacity of FXCQ32M	$=30.0 \times \frac{32}{281.25}=3.4 \mathrm{~kW}$
Capacity of FXCQ40M	$=30.0 \times \frac{40}{281.25}=4.3 \mathrm{~kW}$

Actual capacity of new combination

Room	A	B	C	D	E	F	G	H
Load (kW)	2.9	2.7	2.5	4.3	4.0	4.0	3.9	4.2
Unit size	32	25	25	40	40	40	40	40
Capacity	3.4	2.7	2.7	4.3	4.3	4.3	4.3	4.3

Then, the capacities have to be corrected for actual piping length according to the location of indoor and outdoor units and the distance between them.

2 Capacity correction ratio

2-1 VRVIII-S

RXYSQ4,5PV/RXYSQ4,5PY1

1. Rate of change in cooling capacity

2. Rate of change in heating capacity

3D045710C

1. These figures illustrate the rate of change in capacity of a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions. Moreover, under partial load conditions there is only a minor deviation from the rate of change in capacity shown in the above figures.
2. With this outdoor unit, evaporating pressure constant control when cooling, and condensing pressure constant control when heating is carried out.
3. Method of calculating cooling / heating capacity (max. capacity for combination with standard indoor unit).

Cooling / heating capacity = cooling / heating capacity obtained from performance characteristics table xeach capacity rate of change
In the case length of piping differs depending on the indoor unit, maximum capacity of each unit during simultaneous operation is:
Cooling / heating capacity $=$ cooling / heating capacity of each unit x capacity rate of change for each piping length
<As for RXYSQ4,5P7V3B>
4. When overall equivalent pipe length is 90 m or more, the diameter of the main gas pipes (outdoor unit-branch sections) must be increased. [Diameter of above case]

Model	Gas	Liquid
RXYSQ4, 5P7V3B RXYSQ4, SP7Y1B	$\Phi 19.1$	Not increased

5. When the main sections of the interunit gas pipe diameters are increased the overall equivalent length should be calculated as follows.
$\underline{\text { Overall equivalent length }}=\underline{\text { Equivalent length to main pipe }} \times \underline{0.5}+\underline{\text { Equivalent length after branching }}$
Example:RXYSQ4, 5P7V3B
-RYYSQ4, 5P7Y1B

In the above case (Cooling)
Overall equivalent length $=80 \mathrm{~m} \times 0.5+40 \mathrm{~m}=80 \mathrm{~m}$
The correction factor in capacity when $\mathrm{H} \overline{\mathrm{p}=0 \mathrm{~m}}$ is thus approximately 0.78 .

- Explanation of symbols

$H_{p} \quad$:Level difference (m) between indoor and outdoor units where indoor in inferior position.
H_{M} :Level difference (m) between indoor and outdoor units where indoor in superior position.
$L \quad$: Equivalent pipe length (m)
a :Capacity correction factor
[Diameter of pipes]

Model	Gas	Liquid
RXYSQ4, 5P7V3B RYSSQ4, 5P7Y1B	$\phi 15.9$	$\phi 9.5$

2 Capacity correction ratio

2-1 VRVIII-S

RXYSQ6PV/RXYSQ6PY1

1. Rate of change in cooling capacity

3D045961C

NOTES

1. These figures illustrate the rate of change in capacity of a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions. Moreover, under partial load conditions there is only a minor deviation from the rate of change in capacity shown in the above figures.
2. With this outdoor unit, evaporating pressure constant control when cooling, and condensing pressure constant control when heating is carried out.
3. Method of calculating cooling / heating capacity (max. capacity for combination with standard indoor unit).

Cooling / heating capacity $=$ cooling / heating capacity obtained from performance characteristics table Xeach capacity rate of change
In the case length of piping differs depending on the indoor unit, maximum capacity of each unit during simultaneous operation is:
Cooling / heating capacity $=$ cooling / heating capacity of each unit X capacity rate of change for each piping length
<As for RXYSQ6P7V3B>
4. When overall equivalent pipe length is 90 m or more, the diameter of the main gas pipes (outdoor unit-branch sections) must be increased. [Diameter of above case]

Model	Gas	Liquid
RXYSQ6P7V3B RXYSQ6P7Y1B	$\varnothing 22.2$	Not increased

5. When the main sections of the interunit gas pipe diameters are increased the overall equivalent length should be calculated as follows.
$\underline{\text { Overall equivalent length }=\text { Equivalent length to main pipe } \times 0.5+\text { Equivalent length after branching }}$
Example:RXYSQ6P7V3B
:RXYSQ6P7Y1B

In the above case (Cooling)
Overall equivalent length $=80 \mathrm{~m} \times 0.5+40 \mathrm{~m}=80 \mathrm{~m}$
The correction factor in cap $\overline{a c i t y}$ when $\mathrm{H} \overline{\mathrm{p}=0 \mathrm{~m}}$ is thus approximately 0.86 .

Explanation of symbols

$H_{p} \quad$:Level difference (m) between indoor and outdoor units where indoor in inferior position.
$\mathrm{H}_{\mathrm{M}}^{\mathrm{p}}$:Level difference (m) between indoor and outdoor units where indoor in superior position.
$L^{M} \quad$: Equivalent pipe length (m)
a :Capacity correction factor
[Diameter of pipes]

Model	Gas	Liquid
RXYSQ6P7V3B RXYSQ6P7Y1B	$\phi 19.1$	$\phi 9.5$

2 Capacity correction ratio

2-2 VRVIII cooling only

RXQ5P

- Correction ratio for cooling capacity

NOTES

1 These figures illustrate the correction ratio for piping length in capacity for a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions.
Moreover, under partial load conditions, there is only a minor deviation from the capacity correction ratio, shown in the above figures.
2 With this outdoor unit, constant evaporating pressure control when cooling.
3 Method of calculating the capacity of the outdoor units:
The maximum capacity of the system will be either the total capacity of the indoor units or the maximum capacity of the outdoor units as mentioned below, whichever is smaller.

- Condition: Indoor connection ratio does not exceed 100\%

Maximum capacity of outdoor units = capacity of outdoor units from capacity table at 100% connection ratio
x correction ratio of piping to farest indoor

- Condition: Indoor connection ratio exceeds 100\%

Maximum capacity of outdoor units $=\underline{\text { capacity of outdoor from capacity table at installed connection ratio }}$ x correction ratio of piping to farest indoor
4 When the overall equivalent pipe length is 90 m or more, main gas and liquid pipe diameters must be increased..
For new diameters see below.

Model	gas pipe	liquid pipe
RXQ5P	019.1	09.5

5 When the pipe length after the first refrigerant branch kit is more than 40 m , pipe size between first and final branch kit must be increased (refer also to installation manual).
Diameter of main pipes (standard size)

Model	gas pipe	liquid pipe
RXO5P	015.9	09.5

6 Equivalent length used in the above figures is based upon the following equivalent length.
Equivalent piping length $=\underline{\text { Equivalent length of main pipe } \times \text { Correction factor }+}$
Equivalent length of branch pipes \times Correction factor
Choose a correction factor from the following table.
When cooling capacity is calculated: gas pipe size.

	Correction factor	
	Standard size	Size increase
Cooling (gas pipe)	1.0	0.5

7 Example

In the above case
(Cooling) Overall equivalent length $=\underline{80 \mathrm{~m}} \times \underline{0.5}+\underline{40 \mathrm{~m}} \times \underline{1.0}=80 \mathrm{~m}$
The rate of change in:
cooling capacity when height difference $=0$ is thus approximately 0.78

2 Capacity correction ratio

2-2 VRVIII cooling only

RXQ8P

- Correction ratio for cooling capacity

NOTES

1 These figures illustrate the correction ratio for piping length in capacity for a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions.
Moreover, under partial load conditions, there is only a minor deviation from the capacity correction ratio, shown in the above figures.
2 With this outdoor unit, constant evaporating pressure control when cooling.
3 Method of calculating the capacity of the outdoor units:
The maximum capacity of the system will be either the total capacity of the indoor units or the maximum capacity of the outdoor units as mentioned below, whichever is smaller.

- Condition: Indoor connection ratio does not exceed 100\%

Maximum capacity of outdoor units $=\underline{\text { capacity of outdoor units from capacity table at } 100 \% \text { connection ratio }}$
x correction ratio of piping to farest indoor

- Condition: Indoor connection ratio exceeds 100%

Maximum capacity of outdoor units $=\underline{\text { capacity }}$ of outdoor from capacity table at installed connection ratio
x correction ratio of piping to farest indoor

4 When the overall equivalent pipe length is 90 m or more, main gas and liquid pipe diameters must be increased..
For new diameters see below.

5 When the pipe length after the first refrigerant branch kit is more than 40 m , pipe size between first and final branch kit must be increased (refer also to installation manual).
Diameter of main pipes (standard size)

Model	gas pipe	liquid pipe
RXO8P	$\varnothing 19.1$	09.5

6 Equivalent length used in the above figures is based upon the following equivalent length. Equivalent piping length $=$ Equivalent length of main pipe \times Correction factor +

Equivalent length of branch pipes \times Correction factor
Choose a correction factor from the following table.
When cooling capacity is calculated: gas pipe size.

	Correction factor	
	Standard size	Size increase
Cooling (gas pipe)	1.0	0.5

7 Example

In the above case
(Cooling) Overall equivalent length $=\underline{80 \mathrm{~m}} \times \underline{0.5}+\underline{40 \mathrm{~m}} \times \underline{1.0}=80 \mathrm{~m}$
The rate of change in:
cooling capacity when height difference $=0$ is thus approximately 0.86

2 Capacity correction ratio

2-2 VRVIII cooling only

RXQ10P

- Correction ratio for cooling capacity

NOTES

1 These figures illustrate the correction ratio for piping length in capacity for a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions.
Moreover, under partial load conditions, there is only a minor deviation from the capacity correction ratio, shown in the above figures.
2 With this outdoor unit, constant evaporating pressure control when cooling.
3 Method of calculating the capacity of the outdoor units:
The maximum capacity of the system will be either the total capacity of the indoor units or the maximum capacity of the outdoor units as mentioned below, whichever is smaller.

- Condition: Indoor connection ratio does not exceed 100\%

Maximum capacity of outdoor units = capacity of outdoor units from capacity table at 100% connection ratio
x correction ratio of piping to farest indoor

- Condition: Indoor connection ratio exceeds 100%

Maximum capacity of outdoor units $=\underline{\text { capacity }}$ of outdoor from capacity table at installed connection ratio x correction ratio of piping to farest indoor
4 When the overall equivalent pipe length is 90 m or more, main gas and liquid pipe diameters must be increased.
For new diameters see below.

Model	gas pipe	liquid pipe
RXQ10P	$\varnothing 25.4^{*}$	$\varnothing 12.7$

* If not available on site, do not increase. If not increased, no correction factor should be applied to the equivalent length (see note 6).

5 When the pipe length after the first refrigerant branch kit is more than 40 m , pipe size between first and final branch kit must be increased (refer also to installation manual).
Diameter of main pipes (standard size)

Model	gas pipe	liquid pipe
RXQ10P	022.2	09.5

6 Equivalent length used in the above figures is based upon the following equivalent length.
Equivalent piping length $=\underline{\text { Equivalent length of main pipe } \times \text { Correction factor }+}$
Equivalent length of branch pipes \times Correction factor
Choose a correction factor from the following table
When cooling capacity is calculated: gas pipe size.

	Correction factor	
	Standard size	Size increase
Cooling (gas pipe)	1.0	0.5

7
Example

In the above case
(Cooling) Overall equivalent length $=\underline{80 \mathrm{~m}} \times \underline{0.5}+\underline{40 \mathrm{~m}} \times \underline{1.0}=80 \mathrm{~m}$
The rate of change in:
cooling capacity when height difference $=0$ is thus approximately 0.87

2 Capacity correction ratio

2-2 VRVIII cooling only

RXQ12,14P

- Correction ratio for cooling capacity

NOTES

1 These figures illustrate the correction ratio for piping length in capacity for a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions.
Moreover, under partial load conditions, there is only a minor deviation from the capacity correction ratio, shown in the above figures.
2 With this outdoor unit, constant evaporating pressure control when cooling.
3 Method of calculating the capacity of the outdoor units:
The maximum capacity of the system will be either the total capacity of the indoor units or the maximum capacity of the outdoor units as mentioned below, whichever is smaller.

- Condition: Indoor connection ratio does not exceed 100\%

Maximum capacity of outdoor units $=$ capacity of outdoor units from capacity table at 100% connection ratio
x correction ratio of piping to farest indoor

- Condition: Indoor connection ratio exceeds 100%

Maximum capacity of outdoor units $=\underline{\text { capacity }}$ of outdoor from capacity table at installed connection ratio
x correction ratio of piping to farest indoor

4 When the overall equivalent pipe length is 90 m or more, main gas and liquid pipe diameters must be increased..
For new diameters see below.

Model	gas pipe	liquid pipe
RXQ12-14P	$\varnothing 28.6$	$\otimes 15.9$

5 When the pipe length after the first refrigerant branch kit is more than 40 m , pipe size between first and final branch kit must be increased (refer also to installation manual).
Diameter of main pipes (standard size)

Model	gas pipe	liquid pipe
RXQ12-14P	$\varnothing 28.6$	012.7

6 Equivalent length used in the above figures is based upon the following equivalent length.
Equivalent piping length $=$ Equivalent length of main pipe \times Correction factor +
Equivalent length of branch pipes \times Correction factor
Choose a correction factor from the following table.
When cooling capacity is calculated: gas pipe size.

	Correction factor	
	Standard size	Size increase
Cooling (gas pipe)	1.0	0.5

7 Example

In the above case
(Cooling) Overall equivalent length $=\underline{80 \mathrm{~m}} \times \underline{1.0}+\underline{40 \mathrm{~m}} \times 1.0=120 \mathrm{~m}$
The rate of change in:
cooling capacity when height difference $=0$ is thus approximately 0.89

2 Capacity correction ratio

2-2 VRVIII cooling only

RXQ16P

- Correction ratio for cooling capacity

NOTES

1 These figures illustrate the correction ratio for piping length in capacity for a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions.
Moreover, under partial load conditions, there is only a minor deviation from the capacity correction ratio, shown in the above figures.
2 With this outdoor unit, constant evaporating pressure control when cooling.
3 Method of calculating the capacity of the outdoor units:
The maximum capacity of the system will be either the total capacity of the indoor units or the maximum capacity of the outdoor units as mentioned below, whichever is smaller.

- Condition: Indoor connection ratio does not exceed 100\%

Maximum capacity of outdoor units = capacity of outdoor units from capacity table at 100\% connection ratio
x correction ratio of piping to farest indoor

- Condition: Indoor connection ratio exceeds 100\%

Maximum capacity of outdoor units $=\underline{\text { capacity }}$ of outdoor from capacity table at installed connection ratio x correction ratio of piping to farest indoor
4 When the overall equivalent pipe length is 90 m or more, main gas and liquid pipe diameters must be increased..
For new diameters see below.

Model	gas pipe	liquid pipe
RXQ5P	031.8^{*}	$\varnothing 15.9$

5 When the pipe length after the first refrigerant branch kit is more than 40 m , pipe size between first and final branch kit must be increased (refer also to installation manual).
Diameter of main pipes (standard size)

Model	gas pipe	liquid pipe
RXO5P	028.6	012.7

6 Equivalent length used in the above figures is based upon the following equivalent length.
Equivalent piping length $=\underline{\text { Equivalent length of main pipe } \times \text { Correction factor }+\cdots ~}$
Equivalent length of branch pipes \times Correction factor
Choose a correction factor from the following table.
When cooling capacity is calculated: gas pipe size.

	Correction factor	
	Standard size	Size increase
Cooling (gas pipe)	1.0	0.5

7 Example

In the above case
(Cooling) Overall equivalent length $=\underline{80 \mathrm{~m}} \times \underline{0.5}+\underline{40 \mathrm{~m}} \times \underline{1.0}=80 \mathrm{~m}$
The rate of change in:
cooling capacity when height difference $=0$ is thus approximately 0.88

2 Capacity correction ratio

2-2 VRVIII cooling only

RXQ18P

- Correction ratio for cooling capacity

NOTES

1 These figures illustrate the correction ratio for piping length in capacity for a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions.
Moreover, under partial load conditions, there is only a minor deviation from the capacity correction ratio, shown in the above figures.
2 With this outdoor unit, constant evaporating pressure control when cooling.
3 Method of calculating the capacity of the outdoor units:
The maximum capacity of the system will be either the total capacity of the indoor units or the maximum capacity of the outdoor units as mentioned below, whichever is smaller.

- Condition: Indoor connection ratio does not exceed 100\%

Maximum capacity of outdoor units $=$ capacity of outdoor units from capacity table at 100% connection ratio
x correction ratio of piping to farest indoor

- Condition: Indoor connection ratio exceeds 100%

Maximum capacity of outdoor units $=\underline{\text { capacity }}$ of outdoor from capacity table at installed connection ratio
x correction ratio of piping to farest indoor

4 When the overall equivalent pipe length is 90 m or more, main gas and liquid pipe diameters must be increased..
For new diameters see below.

Model	gas pipe	liquid pipe
RXQ18P	031.8^{*}	019.1

* If not available on site, do not increase. If not increased, no correction factor should be applied to the equivalent length (see note 6)

5 When the pipe length after the first refrigerant branch kit is more than 40 m , pipe size between first and final branch kit must be increased (refer also to installation manual).
Diameter of main pipes (standard size)

Model	gas pipe	liquid pipe
RXQ18P	$\varnothing 28.6$	$\varnothing 15.9$

6 Equivalent length used in the above figures is based upon the following equivalent length.
Equivalent piping length $=$ Equivalent length of main pipe $\times \underline{\text { Correction factor }+}$
Equivalent length of branch pipes \times Correction factor
Choose a correction factor from the following table.
When cooling capacity is calculated: gas pipe size

	Corection factor	
	Standard size	Size increase
Cooling (gas pipe)	1.0	0.5

7 Example

In the above case
(Cooling) Overall equivalent length $=\underline{80 \mathrm{~m}} \times 1.0+\underline{40 \mathrm{~m} \times 1.0}=120 \mathrm{~m}$
The rate of change in:
cooling capacity when height difference $=0$ is thus approximately 0.83

2 Capacity correction ratio

2-3 VRVIII heat pump

RXYQ5P

- Correction ratio for cooling capacity

- Correction ratio for heating capacity

Equidentrt ping length (m)

NOTES

1 These figures illustrate the correction ratio for piping length in capacity for a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions.
Moreover, under partial load conditions, there is only a minor deviation from the capacity correction ratio, shown in the above figures.
2 With this outdoor unit, constant evaporating pressure control when cooling and constant condensing pressure control when heating is carried out.
3 Method of calculating the capacity of the outdoor units:
The maximum capacity of the system will be either the total capacity of the indoor units or the maximum capacity of the outdoor units as mentioned below, whichever is smaller.

- Condition: Indoor connection ratio does not exceed 100\%

Maximum capacity of outdoor units = capacity of outdoor units from capacity table at 100\% connection ratio
x correction ratio of piping to farest indoor

- Condition: Indoor connection ratio exceeds 100\%

Maximum capacity of outdoor units $=\underline{\text { capacity of outdoor from capacity table at installed connection ratio }}$ x correction ratio of piping to farest indoor
4 When the overall equivalent pipe length is 90 m or more, main gas and liquid pipe diameters must be increased..
For new diameters see below.

Model	gas pipe	liquid pipe
RXYQ5P	$\varnothing 19.1$	09.5

5 When the pipe length after the first refrigerant branch kit is more than 40 m , pipe size between first and final branch kit must be increased (refer also to installation manual).
Diameter of main pipes (standard size)

Model	gas pipe	liquid pipe
RXYQ5P	015.9	09.5

6 Equivalent length used in the above figures is based upon the following equivalent length.
Equivalent piping length $=\underline{\text { Equivalent length of main pipe } \times \text { Correction factor }+\cdots ~}$
Equivalent length of branch pipes \times Correction factor
Choose a correction factor from the following table.
When cooling capacity is calculated: gas pipe size
When heating capacity is calculated: liquid pipe size

	Correction factor	
	Standard size	Size increase
Cooling (gas pipe)	1.0	0.5
Heaating (liquid pipe)	1.0	0.5

7 Example

In the above case
(Cooling) Overall equivalent length $=\underline{80 \mathrm{~m}} \times \underline{0.5}+\underline{40 \mathrm{~m} \times 1.0}=80 \mathrm{~m}$
(Heating) $\underline{\text { Overall equivalent length }}=\underline{80 \mathrm{~m}} \times \underline{0.5}+\underline{40 \mathrm{~m}} \times \underline{\underline{1.0}}=120 \mathrm{~m}$
The rate of change in:
cooling capacity when height difference $=0$ is thus approximately 0.78
heating capacity when height difference $=0$ is thus approximately 1.0

2 Capacity correction ratio

2-3 VRVIII heat pump

RXYQ8P

- Correction ratio for cooling capacity

- Correction ratio for heating capacity

NOTES

1 These figures illustrate the correction ratio for piping length in capacity for a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions.
Moreover, under partial load conditions, there is only a minor deviation from the capacity correction ratio, shown in the above figures.
2 With this outdoor unit, constant evaporating pressure control when cooling and constant condensing pressure control when heating is carried out.
3 Method of calculating the capacity of the outdoor units:
The maximum capacity of the system will be either the total capacity of the indoor units or the maximum capacity of the outdoor units as mentioned below, whichever is smaller.

- Condition: Indoor connection ratio does not exceed 100\%

x correction ratio of piping to farest indoor
- Condition: Indoor connection ratio exceeds 100%

Maximum capacity of outdoor units $=\underline{\text { capacity }}$ of outdoor from capacity table at installed connection ratio
x correction ratio of piping to farest indoor

4 When the overall equivalent pipe length is 90 m or more, main gas and liquid pipe diameters must be increased..
For new diameters see below.

Model	gas pipe	liquid pipe
RXYQ8P	$\varnothing 22.2$	012.7

5 When the pipe length after the first refrigerant branch kit is more than 40 m , pipe size between first and final branch kit must be increased (refer also to installation manual).
Diameter of main pipes (standard size)

Model	gas pipe	liquid pipe
RXYQ8P	$\varnothing 19.1$	09.5

6 Equivalent length used in the above figures is based upon the following equivalent length.
Equivalent piping length $=$ Equivalent length of main pipe \times Correction factor +
Equivalent length of branch pipes \times Correction factor
Choose a correction factor from the following table.
When cooling capacity is calculated: gas pipe size
When heating capacity is calculated: liquid pipe size

	Correction factor	
	Standard size	Size increase
Cooling (gas pipe)	1.0	0.5
Heating (liquid pipe)	1.0	0.5

7 Example

In the above case
(Cooling) Overall equivalent length $=80 \mathrm{~m} \times \underline{0.5}+40 \mathrm{~m} \times 1.0=80 \mathrm{~m}$
(Heating) Overall equivalent length $=\underline{80 \mathrm{~m}} \times \underline{0.5}+\underline{40 \mathrm{~m}} \times \underline{1.0}=80 \mathrm{~m}$
The rate of change in:
cooling capacity when height difference $=0$ is thus approximately 0.86
heating capacity when height difference $=0$ is thus approximately 1.0

2 Capacity correction ratio

2-3 VRVIII heat pump

RXYQ10P

- Correction ratio for cooling capacity

- Correction ratio for heating capacity

NOTES

1 These figures illustrate the correction ratio for piping length in capacity for a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions.
Moreover, under partial load conditions, there is only a minor deviation from the capacity correction ratio, shown in the above figures.
2 With this outdoor unit, constant evaporating pressure control when cooling and constant condensing pressure control when heating is carried out.
3 Method of calculating the capacity of the outdoor units:
The maximum capacity of the system will be either the total capacity of the indoor units or the maximum capacity of the outdoor units as mentioned below, whichever is smaller.

- Condition: Indoor connection ratio does not exceed 100%

Maximum capacity of outdoor units = capacity of outdoor units from capacity table at 100\% connection ratio
x correction ratio of piping to farest indoor

- Condition: Indoor connection ratio exceeds 100\%

Maximum capacity of outdoor units $=\underline{\text { capacity of outdoor from capacity table at installed connection ratio }}$ x correction ratio of piping to farest indoor
4 When the overall equivalent pipe length is 90 m or more, main gas and liquid pipe diameters must be increased..
For new diameters see below.

Model	gas pipe	liquid pipe
RXYQ1OP	$\varnothing 25.4^{*}$	$\varnothing 12.7$

* If not available on site, do not increase. If not increased, no correction factor should be applied to the equivalent length (see note 6).

5 When the pipe length after the first refrigerant branch kit is more than 40 m , pipe size between first and final branch kit must be increased (refer also to installation manual).
Diameter of main pipes (standard size)

Model	gas pipe	liquid pipe
RXYQ10P	$\varnothing 22.2$	$\varnothing 9.5$

6 Equivalent length used in the above figures is based upon the following equivalent length.
Equivalent piping length $=\underline{\text { Equivalent length of main pipe } \times \text { Correction factor }+}$
Equivalent length of branch pipes \times Correction factor
Choose a correction factor from the following table.
When cooling capacity is calculated: gas pipe size
When heating capacity is calculated: liquid pipe size.

	Correction factor	
	Standard size	Size increase
Cooling (gas pipe)	1.0	0.5
Heaating (liquid pipe)	1.0	0.5

7 Example

In the above case
(Cooling) Overall equivalent length $=\underline{80 \mathrm{~m}} \times \underline{0.5}+\underline{40 \mathrm{~m}} \times \underline{1.0}=80 \mathrm{~m}$ (Heating) Overall equivalent length $=\underline{80 \mathrm{~m}} \times \underline{0.5}+\underline{40 \mathrm{~m}} \times \underline{1.0}=80 \mathrm{~m}$ The rate of change in:
cooling capacity when height difference $=0$ is thus approximately 0.87
heating capacity when height difference $=0$ is thus approximately 0.90

2 Capacity correction ratio

2-3 VRVIII heat pump

RXYQ12,14,24,36P

Correction ratio for cooling capacity

Correction ratio for heating capacity

Notes

1. These figures illustrate the correction ratio for piping length in capacity for a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions.
Moreover, under partial load conditions there is only a minor deviation from the rate of change in capacity shown in the above figures.
2. With this outdoor unit, evaporating pressure constant control when cooling, and condensing pressure constant control when heating is carried out
3. Method of calculating the capacity of the outdoor units

The maximum capacity of the system will be either the total capacity of the indoor units or the maximum capacity of the outdoor units as mentioned below, whichever is smaller.
Condition: Indoor connection ratio does not exceed 100\%
Maximum capacity of outdoor units $=$ Capacity of outdoor units from capacity table at 100\% connection ratio
X Correction ratio of piping to farest indoor
Condition: Indoor connection ratio exceeds 100\%
Maximum capacity of outdoor units
$=$ Capacity of outdoor units from capacity table at installed connection ratio
X Correction ratio of piping to farest indoor
4. When the overall equivalent pipe length is 90 m or more, main gas and liquid pipe diameters must be increased

For new diameters, see below.

model	Gas pipe	Liquid pipe
RXYQ12+14P	28,6	15,9
RXYQ24P	34,9	19,1
RXYQ36P	41,3	22,2

5. When the pipe length after the first refrigerant branch kit is more than 40 m , pipe size between first and final branch kit must be increased (refer also to installation manual).

model	Gas pipe	Liquid pipe
RXYQ12+14P	28,6	12,7
RXYQ24P	34,9	15,9
RXYQ36P	41,3	19,1

6. Equivalent length used in the above figures is based upon the following equivalent length

Equivalent piping length =
Equivalent length of main pipe $\quad \times \quad$ Correction factor

Equivalent length of branch pipes
Correction factor
Choose the correction factor from the following table.
When cooling capacity is calculated: gas pipe size
When heating capacity is calculated: liquid pipe size

	Correction factor	
	Standard size	Size increase
Cooling (Gas pipe)	1,0	0,5
Heating (Liquid pipe)	1,0	0,5

Example

Main gas pipe size increase Branch gas pipe size increase

In the above case
(Cooling) Overall equivalent length $=80 \mathrm{mx1}, 0+40 \mathrm{mx} 1,0=120 \mathrm{~m}$ (Heating) Overall equivalent length $=80 \mathrm{mx0,5}+40 \mathrm{~m} \times 1,0=80 \mathrm{~m}$
The rate of change in
Cooling capacity when heigth difference $=0$ is thus approximately 0,89
Heating capacity when heigth difference $=0$ is thus approximately 1,0

2 Capacity correction ratio

2-3 VRVIII heat pump

RXYQ16P

- Correction ratio for cooling capacity

- Correction ratio for heating capacity

NOTES

1 These figures illustrate the correction ratio for piping length in capacity for a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions.
Moreover, under partial load conditions, there is only a minor deviation from the capacity correction ratio, shown in the above figures.
2 With this outdoor unit, constant evaporating pressure control when cooling and constant condensing pressure control when heating is carried out.
3 Method of calculating the capacity of the outdoor units:
The maximum capacity of the system will be either the total capacity of the indoor units or the maximum capacity of the outdoor units as mentioned below, whichever is smaller.

- Condition: Indoor connection ratio does not exceed 100%

Maximum capacity of outdoor units $=\underline{\text { capacity of outdoor units from capacity table at } 100 \% \text { connection ratio }}$
x correction ratio of piping to farest indoor

- Condition: Indoor connection ratio exceeds 100%

Maximum capacity of outdoor units $=$ capacity of outdoor from capacity table at installed connection ratio x correction ratio of piping to farest indoor
4 When the overall equivalent pipe length is 90 m or more, main gas and liquid pipe diameters must be increased..
For new diameters see below.

Model	gas pipe	liquid pipe
RXYQ16P	$\varnothing 31.8^{*}$	$\varnothing 15.9$

* If not available on site, do not increase. If not increased, no correction factor should be applied to the equivalent length (see note 6).

5 When the pipe length after the first refrigerant branch kit is more than 40 m , pipe size between first and final branch kit must be increased (refer also to installation manual).
Diameter of main pipes (standard size)

Model	gas pipe	liquid pipe
RXYQ16P	$\varnothing 28.6$	$\varnothing 12.7$

6 Equivalent length used in the above figures is based upon the following equivalent length.
Equivalent piping length $=$ Equivalent length of main pipe \times Correction factor +
Equivalent length of branch pipes \times Correction factor
Choose a correction factor from the following table.
When cooling capacity is calculated: gas pipe size
When heating capacity is calculated: liquid pipe size.

	Correction factor	
	Standard size	Size increase
Cooling (gas pipe)	1.0	0.5
Heating (liquid pipe)	1.0	0.5

7 Example

In the above case
(Cooling) Overall equivalent length $=\underline{80 \mathrm{~m}} \times \underline{0.5}+40 \mathrm{~m} \times 1.0=80 \mathrm{~m}$ (Heating) Overall equivalent length $=\underline{80 \mathrm{~m}} \times \underline{0.5}+\underline{40 \mathrm{~m}} \times \underline{1.0}=80 \mathrm{~m}$ The rate of change in:
cooling capacity when height difference $=0$ is thus approximately 0.88
heating capacity when height difference $=0$ is thus approximately 0.99

2 Capacity correction ratio

2-3 VRVIII heat pump

RXYQ18,26,28,30,38,40,42,44P

- Correction ratio for cooling capacity

- Correction ratio for heating capacity

NOTES

1 These figures illustrate the correction ratio for piping length in capacity for a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions.
Moreover, under partial load conditions, there is only a minor deviation from the capacity correction ratio, shown in the above figures.
2 With this outdoor unit, constant evaporating pressure control when cooling and constant condensing pressure control when heating is carried out.
3 Method of calculating the capacity of the outdoor units:
The maximum capacity of the system will be either the total capacity of the indoor units or the maximum capacity of the outdoor units as mentioned below, whichever is smaller.

- Condition: Indoor connection ratio does not exceed 100%
$\underline{\text { Maximum capacity of outdoor units }}=\underline{\text { capacity of outdoor units from capacity table at } 100 \% \text { connection ratio }}$
x correction ratio of piping to farest indoor
- Condition: Indoor connection ratio exceeds 100%

Maximum capacity of outdoor units $=$ capacity of outdoor from capacity table at installed connection ratio
x correction ratio of piping to farest indoor
4 When the overall equivalent pipe length is 90 m or more, main gas and liquid pipe diameters must be increased..
For new diameters see below.

Model	gas pipe	liquid pipe
RXYQ18P	$\varnothing 31.8^{*}$	$\varnothing 19.1$
RXYQ26-30P	$\varnothing 38.1^{*}$	$\varnothing 22.2$
RXYQ38-44P	$\varnothing 41.3$	$\varnothing 22.2$

* If not available on site, do not increase. If not increased, no correction factor should be applied to the equivalent length (see note 6).

5 When the pipe length after the first refrigerant branch kit is more than 40 m , pipe size between first and final branch kit must be increased (refer also to installation manual).
Diameter of main pipes (standard size)

Model	gas pipe	liquid pipe
RXYQ18P	$\varnothing 28.6$	$\varnothing 15.9$
RXYQ26-30P	$\varnothing 34.9$	$\varnothing 19.1$
RXYQ38-44P	$\varnothing 41.3$	$\varnothing 19.1$

6 Equivalent length used in the above figures is based upon the following equivalent length.
Equivalent piping length $=$ Equivalent length of main pipe \times Correction factor + Equivalent length of branch pipes \times Correction factor
Choose a correction factor from the following table.
When cooling capacity is calculated: gas pipe size
When heating capacity is calculated: liquid pipe size.

	Correction factor	
	Standard size	Size increase
Cooling (gas pipe)	1.0	0.5
Heating (liquid pipe)	1.0	0.5

7 Example

In the above case
(Cooling) Overall equivalent length $=\underline{80 \mathrm{~m}} \times \underline{1.0}+\underline{40 \mathrm{~m}} \times \underline{1.0}=120 \mathrm{~m}$
(Heating) Overall equivalent length $=\underline{80 \mathrm{~m}} \times \underline{0.5}+\underline{40 \mathrm{~m}} \times \underline{1.0}=80 \mathrm{~m}$
The rate of change in:
cooling capacity when height difference $=0$ is thus approximately 0.83
heating capacity when height difference $=0$ is thus approximately 1.0

2 Capacity correction ratio

2-3 VRVIII heat pump

RXYQ20,32,34P

- Correction ratio for cooling capacity

- Correction ratio for heating capacity

NOTES

1 These figures illustrate the correction ratio for piping length in capacity for a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions.
Moreover, under partial load conditions, there is only a minor deviation from the capacity correction ratio, shown in the above figures.
2 With this outdoor unit, constant evaporating pressure control when cooling and constant condensing pressure control when heating is carried out.
3 Method of calculating the capacity of the outdoor units:
The maximum capacity of the system will be either the total capacity of the indoor units or the maximum capacity of the outdoor units as mentioned below, whichever is smaller.

- Condition: Indoor connection ratio does not exceed 100% Maximum capacity of outdoor units $=\underline{\text { capacity of outdoor units from capacity table at } 100 \% \text { connection ratio }}$
x correction ratio of piping to farest indoor
- Condition: Indoor connection ratio exceeds 100%

Maximum capacity of outdoor units = capacity of outdoor from capacity table at installed connection ratio x correction ratio of piping to farest indoor
4 When the overall equivalent pipe length is 90 m or more, main gas and liquid pipe diameters must be increased.
For new diameters see below.

Model	gas pipe	liquid pipe
RXYQ20P	$\varnothing 31.8^{*}$	$\varnothing 19.1$
RXYQ32-34P	$\varnothing 38.1^{*}$	$\varnothing 22.2$

* If not available on site, do not increase. If not increased, no correction factor should be applied to the equivalent length (see note 6).

5 When the pipe length after the first refrigerant branch kit is more than 40 m , pipe size between first and final branch kit must be increased (refer also to installation manual).
Diameter of main pipes (standard size)

Model	gas pipe	liquid pipe
RXYQ20P	$\varnothing 28.6$	$\varnothing 15.9$
RXYQ32-34P	$\varnothing 34.9$	$\varnothing 19.1$

6 Equivalent length used in the above figures is based upon the following equivalent length.
Equivalent piping length $=\underline{\text { Equivalent length of main pipe } \times \text { Correction factor }+}$
Equivalent length of branch pipes \times Correction factor
Choose a correction factor from the following table.
When cooling capacity is calculated: gas pipe size
When heating capacity is calculated: liquid pipe size.

	Correction factor	
	Standard size	Size increase
Cooling (gas pipe)	1.0	0.5
Heating (liquid pipe)	1.0	0.5

7 Example

In the above case
(Cooling) Overall equivalent length $=\underline{80 \mathrm{~m}} \times \underline{0.5}+\underline{40 \mathrm{~m}} \times \underline{1.0}=80 \mathrm{~m}$
(Heating) Overall equivalent length $=80 \mathrm{~m} \times \underline{0.5}+\underline{40 \mathrm{~m} \times 1.0}=80 \mathrm{~m}$
The rate of change in:
cooling capacity when height difference $=0$ is thus approximately 0.88
heating capacity when height difference $=0$ is thus approximately 1.0

2 Capacity correction ratio

2-3 VRVIII heat pump

RXYQ22P

- Correction ratio for cooling capacity

- Correction ratio for heating capacity

3TW27232-6

NOTES

1 These figures illustrate the correction ratio for piping length in capacity for a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions.
Moreover, under partial load conditions, there is only a minor deviation from the capacity correction ratio, shown in the above figures.
2 With this outdoor unit, constant evaporating pressure control when cooling and constant condensing pressure control when heating is carried out.
3 Method of calculating the capacity of the outdoor units:
The maximum capacity of the system will be either the total capacity of the indoor units or the maximum capacity of the outdoor units as mentioned below, whichever is smaller.

- Condition: Indoor connection ratio does not exceed 100\%

Maximum capacity of outdoor units $=\underline{\text { capacity of outdoor units from capacity table at } 100 \% \text { connection ratio }}$
x correction ratio of piping to farest indoor

- Condition: Indoor connection ratio exceeds 100%

Maximum capacity of outdoor units $=\underline{\text { capacity }}$ of outdoor from capacity table at installed connection ratio
x correction ratio of piping to farest indoor

4 When the overall equivalent pipe length is 90 m or more, main gas and liquid pipe diameters must be increased..
For new diameters see below.

Model	gas pipe	liquid pipe
RXYQ22P	$\varnothing 31.8^{*}$	$\otimes 19.1$

* If not available on site, do not increase. If not increased, no correction factor should be applied to the equivalent length (see note 6).

5 When the pipe length after the first refrigerant branch kit is more than 40 m , pipe size between first and final branch kit must be increased (refer also to installation manual).
Diameter of main pipes (standard size)

Model	gas pipe	liquid pipe
RXYQ22P	$\varnothing 28.6$	015.9

6 Equivalent length used in the above figures is based upon the following equivalent length.
Equivalent piping length $=$ Equivalent length of main pipe $\times \underline{\text { Correction factor }+}$
Equivalent length of branch pipes \times Correction factor
Choose a correction factor from the following table.
When cooling capacity is calculated: gas pipe size
When heating capacity is calculated: liquid pipe size.

	Correction factor	
	Standard size	Size increase
Cooling (gas pipe)	1.0	0.5
Heating (liquid pipe)	1.0	0.5

7 Example

In the above case
(Cooling) Overall equivalent length $=80 \mathrm{~m} \times 0.5+40 \mathrm{~m} \times 1.0=80 \mathrm{~m}$ (Heating) Overall equivalent length $=\underline{80 \mathrm{~m}} \times \underline{0.5}+\underline{40 \mathrm{~m}} \times \underline{1.0}=80 \mathrm{~m}$ The rate of change in:
cooling capacity when height difference $=0$ is thus approximately 0.88
heating capacity when height difference $=0$ is thus approximately 1.0

2 Capacity correction ratio

2-3 VRVIII heat pump

RXYQ46P

- Correction ratio for cooling capacity

- Correction ratio for heating capacity

NOTES

1 These figures illustrate the correction ratio for piping length in capacity for a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions.
Moreover, under partial load conditions, there is only a minor deviation from the capacity correction ratio, shown in the above figures.
2 With this outdoor unit, constant evaporating pressure control when cooling and constant condensing pressure control when heating is carried out.
3 Method of calculating the capacity of the outdoor units:
The maximum capacity of the system will be either the total capacity of the indoor units or the maximum capacity of the outdoor units as mentioned below, whichever is smaller.

- Condition: Indoor connection ratio does not exceed 100\%

Maximum capacity of outdoor units = capacity of outdoor units from capacity table at 100\% connection ratio
x correction ratio of piping to farest indoor

- Condition: Indoor connection ratio exceeds 100%

Maximum capacity of outdoor units $=\underline{\text { capacity of outdoor from capacity table at installed connection ratio }}$ x correction ratio of piping to farest indoor
4 When the overall equivalent pipe length is 90 m or more, main gas and liquid pipe diameters must be increased..
For new diameters see below.

Model	gas pipe	liquid pipe
RXYQ46P	041.3	$\varnothing 22.2$

5 When the pipe length after the first refrigerant branch kit is more than 40 m , pipe size between first and final branch kit must be increased (refer also to installation manual).
Diameter of main pipes (standard size)

Model	gas pipe	liquid pipe
RXYQ46P	041.3	019.1

6 Equivalent length used in the above figures is based upon the following equivalent length.
Equivalent piping length $=$ Equivalent length of main pipe \times Correction factor +
Equivalent length of branch pipes \times Correction factor
Choose a correction factor from the following table.
When cooling capacity is calculated: gas pipe size
When heating capacity is calculated: liquid pipe size.

	Correction factor	
	Standard size	Size increase
Cooling (gas pipe)	1.0	0.5
Heating (liquid pipe)	1.0	0.5

7 Example

In the above case
(Cooling) Overall equivalent length $=\underline{80 \mathrm{~m}} \times \underline{1.0}+\underline{40 \mathrm{~m} \times 1.0}=120 \mathrm{~m}$
(Heating) Overall equivalent length $=\underline{80 \mathrm{~m}} \times \underline{0.5}+\underline{40 \mathrm{~m}} \times \underline{1.0}=80 \mathrm{~m}$
The rate of change in:
cooling capacity when height difference $=0$ is thus approximately 0.83
heating capacity when height difference $=0$ is thus approximately 1.0

2 Capacity correction ratio

2-3 VRVIII heat pump

RXYQ48P

- Correction ratio for cooling capacity

- Correction ratio for heating capacity

NOTES

1 These figures illustrate the correction ratio for piping length in capacity for a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions.
Moreover, under partial load conditions, there is only a minor deviation from the capacity correction ratio, shown in the above figures.
2 With this outdoor unit, constant evaporating pressure control when cooling and constant condensing pressure control when heating is carried out.
3 Method of calculating the capacity of the outdoor units:
The maximum capacity of the system will be either the total capacity of the indoor units or the maximum capacity of the outdoor units as mentioned below, whichever is smaller.

- Condition: Indoor connection ratio does not exceed 100\%

Maximum capacity of outdoor units $=$ capacity of outdoor units from capacity table at 100% connection ratio
x correction ratio of piping to farest indoor

- Condition: Indoor connection ratio exceeds 100%

Maximum capacity of outdoor units $=\underline{\text { capacity }}$ of outdoor from capacity table at installed connection ratio
x correction ratio of piping to farest indoor

4 When the overall equivalent pipe length is 90 m or more, main gas and liquid pipe diameters must be increased..
For new diameters see below.

Model	gas pipe	liquid pipe
RXYQ48P	$\varnothing 41.3$	$\varnothing 22.2$

5 When the pipe length after the first refrigerant branch kit is more than 40 m , pipe size between first and final branch kit must be increased (refer also to installation manual).
Diameter of main pipes (standard size)

Model	gas pipe	liquid pipe
RXYQ48P	$\varnothing 41.3$	019.1

6 Equivalent length used in the above figures is based upon the following equivalent length.
Equivalent piping length $=$ Equivalent length of main pipe \times Correction factor +
Equivalent length of branch pipes \times Correction factor
Choose a correction factor from the following table.
When cooling capacity is calculated: gas pipe size
When heating capacity is calculated: liquid pipe size.

	Corection factor	
	Standard size	Size increase
Cooling (gas pipe)	1.0	0.5
Heating (liquid pipe)	1.0	0.5

7 Example

In the above case
(Cooling) Overall equivalent length $=80 \mathrm{~m} \times 1.0+40 \mathrm{~m} \times 1.0=120 \mathrm{~m}$
(Heating) Overall equivalent length $=\underline{80 \mathrm{~m}} \times \underline{\underline{0.5}}+\underline{40 \mathrm{~m}} \times \underline{1.0}=80 \mathrm{~m}$
The rate of change in:
cooling capacity when height difference $=0$ is thus approximately 0.83
heating capacity when height difference $=0$ is thus approximately 0.97

2 Capacity correction ratio

2-3 VRVIII heat pump

RXYQ50P

- Correction ratio for cooling capacity

- Correction ratio for heating capacity

NOTES

1 These figures illustrate the correction ratio for piping length in capacity for a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions.
Moreover, under partial load conditions, there is only a minor deviation from the capacity correction ratio, shown in the above figures.
2 With this outdoor unit, constant evaporating pressure control when cooling and constant condensing pressure control when heating is carried out.
3 Method of calculating the capacity of the outdoor units:
The maximum capacity of the system will be either the total capacity of the indoor units or the maximum capacity of the outdoor units as mentioned below, whichever is smaller.

- Condition: Indoor connection ratio does not exceed 100%

Maximum capacity of outdoor units $=\underline{\text { capacity of outdoor units from capacity table at } 100 \% \text { connection ratio }}$
x correction ratio of piping to farest indoor

- Condition: Indoor connection ratio exceeds 100%

Maximum capacity of outdoor units $=\underline{\text { capacity of outdoor from capacity table at installed connection ratio }}$ x correction ratio of piping to farest indoor
4 When the overall equivalent pipe length is 90 m or more, main gas and liquid pipe diameters must be increased..
For new diameters see below.

Model	gas pipe	liquid pipe
RXYQ50P	$\varnothing 41.3$	$\varnothing 22.2$

5 When the pipe length after the first refrigerant branch kit is more than 40 m , pipe size between first and final branch kit must be increased (refer also to installation manual).
Diameter of main pipes (standard size)

Model	gas pipe	liquid pipe
RXYQ50P	041.3	019.1

6 Equivalent length used in the above figures is based upon the following equivalent length.
Equivalent piping length $=$ Equivalent length of main pipe \times Correction factor +
Equivalent length of branch pipes \times Correction factor
Choose a correction factor from the following table.
When cooling capacity is calculated: gas pipe size
When heating capacity is calculated: liquid pipe size.

	Correction factor	
	Standard size	Size increase
Cooling (gas pipe)	1.0	0.5
Heating (liquid pipe)	1.0	0.5

7 Example

In the above case
(Cooling) Overall equivalent length $=\underline{80 \mathrm{~m}} \times 1.0+\underline{40 \mathrm{~m}} \times \underline{1.0}=120 \mathrm{~m}$
(Heating) Overall equivalent length $=\underline{80 \mathrm{~m}} \times \underline{0.5}+\underline{40 \mathrm{~m}} \times \underline{1.0}=80 \mathrm{~m}$
The rate of change in:
cooling capacity when height difference $=0$ is thus approximately 0.83
heating capacity when height difference $=0$ is thus approximately 0.92

2 Capacity correction ratio

2-3 VRVIII heat pump

RXYQ52P

- Correction ratio for cooling capacity

- Correction ratio for heating capacity

NOTES

1 These figures illustrate the correction ratio for piping length in capacity for a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions.
Moreover, under partial load conditions, there is only a minor deviation from the capacity correction ratio, shown in the above figures.
2 With this outdoor unit, constant evaporating pressure control when cooling and constant condensing pressure control when heating is carried out.
3 Method of calculating the capacity of the outdoor units:
The maximum capacity of the system will be either the total capacity of the indoor units or the maximum capacity of the outdoor units as mentioned below, whichever is smaller.

- Condition: Indoor connection ratio does not exceed 100%

Maximum capacity of outdoor units $=$ capacity of outdoor units from capacity table at 100% connection ratio
x correction ratio of piping to farest indoor

- Condition: Indoor connection ratio exceeds 100%

Maximum capacity of outdoor units = capacity of outdoor from capacity table at installed connection ratio
x correction ratio of piping to farest indoor

4 When the overall equivalent pipe length is 90 m or more, main gas and liquid pipe diameters must be increased..
For new diameters see below.

Model	gas pipe	liquid pipe
RXYQ52P	$\varnothing 41.3$	$\varnothing 22.2$

5 When the pipe length after the first refrigerant branch kit is more than 40 m , pipe size between first and final branch kit must be increased (refer also to installation manual).
Diameter of main pipes (standard size)

Model	gas pipe	liquid pipe
RXYQ52P	$\varnothing 41.3$	$\otimes 19.1$

6 Equivalent length used in the above figures is based upon the following equivalent length.
Equivalent piping length $=$ Equivalent length of main pipe \times Correction factor +
Equivalent length of branch pipes \times Correction factor
Choose a correction factor from the following table.
When cooling capacity is calculated: gas pipe size
When heating capacity is calculated: liquid pipe size.

	Correction factor	
	Standard size	Size increase
Cooling (gas pipe)	1.0	0.5
Heating (liquid pipe)	1.0	0.5

7 Example

In the above case
(Cooling) Overall equivalent length $=\underline{80 \mathrm{~m}} \times \underline{1.0}+\underline{40 \mathrm{~m}} \times \underline{1.0}=120 \mathrm{~m}$
(Heating) Overall equivalent length $=\underline{80 \mathrm{~m}} \times \underline{\underline{0.5}}+\underline{40 \mathrm{~m}} \times \underline{1.0}=80 \mathrm{~m}$
The rate of change in:
cooling capacity when height difference $=0$ is thus approximately 0.83
heating capacity when height difference $=0$ is thus approximately 0.88

2 Capacity correction ratio

2-3 VRVIII heat pump

RXYQ54P

- Correction ratio for cooling capacity

- Correction ratio for heating capacity

1 These figures illustrate the correction ratio for piping length in capacity for a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions.
Moreover, under partial load conditions, there is only a minor deviation from the capacity correction ratio, shown in the above figures.
2 With this outdoor unit, constant evaporating pressure control when cooling and constant condensing pressure control when heating is carried out.
3 Method of calculating the capacity of the outdoor units:
The maximum capacity of the system will be either the total capacity of the indoor units or the maximum capacity of the outdoor units as mentioned below, whichever is smaller.

- Condition: Indoor connection ratio does not exceed 100\%

Maximum capacity of outdoor units $=\underline{\text { capacity of outdoor units from capacity table at } 100 \% \text { connection ratio }}$
x correction ratio of piping to farest indoor
Condition: Indoor connection ratio exceeds 100\%
Maximum capacity of outdoor units $=\underline{\text { capacity of outdoor from capacity table at installed connection ratio }}$ x correction ratio of piping to farest indoor
4 When the overall equivalent pipe length is 90 m or more, main gas and liquid pipe diameters must be increased.
For new diameters see below.

Model	gas pipe	liquid pipe
RXYQ54P	$\varnothing 41.3$	$\emptyset 22.2$

5 When the pipe length after the first refrigerant branch kit is more than 40 m , pipe size between first and final branch kit must be increased (refer also to installation manual).
Diameter of main pipes (standard size)

Model	gas pipe	liquid pipe
RXYQ54P	041.3	019.1

6 Equivalent length used in the above figures is based upon the following equivalent length.
Equivalent piping length $=\underline{\text { Equivalent length of main pipe } \times \text { Correction factor }+}$
Equivalent length of branch pipes \times Correction factor
Choose a correction factor from the following table.
When cooling capacity is calculated: gas pipe size
When heating capacity is calculated: liquid pipe size

	Correction factor	
	Standard size	Size increase
Cooling (gas pipe)	1.0	0.5
Heating (liquid pipe)	1.0	0.5

7 Example

In the above case
(Cooling) Overall equivalent length $=\underline{80 \mathrm{~m} \times 1.0}+\underline{40 \mathrm{~m} \times 1.0}=120 \mathrm{~m}$
(Heating) Overall equivalent length $=\underline{80 \mathrm{~m}} \times \underline{0.5}+\underline{40 \mathrm{~m}} \times \underline{1.0}=80 \mathrm{~m}$
The rate of change in:
cooling capacity when height difference $=0$ is thus approximately 0.83
heating capacity when height difference $=0$ is thus approximately 0.83

2 Capacity correction ratio

2-4 VRVIII heat recovery

REYQ8,22P

1. These figures illustrate the rate of change in capacity of a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions. Moreover, under partial load conditions there is only a minor deviation from the rate of change in capacity shown in the above figures.
2. With this outdoor unit, evaporating pressure constant control when cooling, and condensing pressure constant control when heating is carried out.
3. Method of calculating A / C (cooling/heating) capacity:

The maximum A/C capacity of the system will be either the total A/C capacity of the indoor units obtained from capacity characteristic table or the maximum A / C capacity of outdoor units as mentioned bellow, whichever smaller.
Calculating A/C capacity of outdoor units

- Condition: Indoor unit combination ratio does not exceed 100%.

Maximum A/C capacity of outdoor units = A/C capacity of outdoor units obtained from capacity characteristic table at the 100% combination
X Capacity change rate due to piping length to the farthest indoor unit

- Condition: Indoor unit combination ratio exceeds 100%

Maximum A/C capacity of outdoor units $=\mathrm{A} / \mathrm{C}$ capacity of outdoor units obtained from capacity characteristic table at the combination
X Capacity change rate due to piping length to the farthest indoor unit
4. When overall equivalent pipe length is 90 m or more, the diameter of the main gas pipes (outdoor unit-branch sections) must be increased.

When level difference is 50 m or more, the diameter of the main liquid pipe (outdoor unit-branch sections) must be increased.
[Diameter of above case]

5. When the main sections of the interunit gas pipe diameters are increased the overall equivalent length should be calculated as follows. (Heating only)
$\underline{\text { Overall equivalent length }}=\underline{\text { Equivalent length to main pipe }} \times \underline{\text { Correction factor }}+\underline{\text { Equivalent length after branching }}$
[Choose a correction factor from the following table]

Model	Correction factor
REYQ8PY1	0.2
REYQ22PY1	0.4

(Example) In case of REYQ22PY

In the above case (Heating)
Overall equivalent length $=80 \mathrm{~m} \times 0.4+40 \mathrm{~m}=72 \mathrm{~m}$
The correction factor in capacity when $\mathrm{H} \overline{\mathrm{p}=0 \mathrm{~m}}$ is thus approximately 1.0.
6. In the combination which does not include cooling only indoor unit, Calculate the equivalent length pipe by the following when you calculate cooling capacity.

Overall equivalent length $=$ Equivalent length to main pipe $\times 0.5+$ Equivalent length after branching
Example:

In the above case (Cooling)
Overall equivalent length $=80 \mathrm{~m} \times 0.5+40 \mathrm{~m}=80 \mathrm{~m}$
The correction factor in capacity when $\mathrm{H} \overline{\mathrm{p}=0 \mathrm{~m}}$ is thus approximately 0.88 .

Explanation of symbols

Explanation of symbols	
$H_{p} \quad$:Level difference (m) between indoor and outdoor units where indoor in inferior position.	
$H_{M}^{p} \quad$:Level difference (m) between indoor and outdoor units where indoor in superior position.	
Equivalent pipe length (m)	
a :Capa	tion fact
[Diameter of pipe (standard size)]	
Model	Liquid
REYQ8PY1	¢ 9.5
REYQ22PY1	¢ 15.9

2 Capacity correction ratio

2-4 VRVIII heat recovery

REYQ10P

1. Rate of change in cooling capacity

2. Rate of change in heating capacity

NOTES

1. These figures illustrate the rate of change in capacity of a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions. Moreover, under partial load conditions there is only a minor deviation from the rate of change in capacity shown in the above figures.
2. With this outdoor unit, evaporating pressure constant control when cooling, and condensing pressure constant control when heating is carried out.
3. Method of calculating A / C (cooling/heating) capacity:

The maximum A/C capacity of the system will be either the total A / C capacity of the indoor units obtained from capacity characteristic table or the maximum A / C capacity of outdoor units as mentioned bellow, whichever smaller.
Calculating A/C capacity of outdoor units

- Condition: Indoor unit combination ratio does not exceed 100\%

Maximum A/C capacity of outdoor units = A/C capacity of outdoor units obtained from capacity characteristic table at the 100\% combination
X Capacity change rate due to piping length to the farthest indoor unit

- Condition: Indoor unit combination ratio exceeds 100%.

Maximum A/C capacity of outdoor units = A/C capacity of outdoor units obtained from capacity characteristic table at the combination

> x Capacity change rate due to piping length to the farthest indoor unit
4. When overall equivalent pipe length is 90 m or more, the diameter of the main gas pipes (outdoor unit-branch sections) must be increased When level difference is 50 m or more, the diameter of the main liquid pipe (outdoor unit-branch sections) must be increased.
Diameter of above case]

5. When the main sections of the interunit gas pipe diameters are increased the overall equivalent length should be calculated as follows. (Heating only) Overall equivalent length $=$ Equivalent length to main pipe $\times 0.2+$ Equivalent length after branching
Example:

In the above case (Heating)
Overall equivalent length $=80 \mathrm{~m} \times 0.2+40 \mathrm{~m}=56 \mathrm{~m}$
The correction factor in capacity $w \overline{h e n} \mathrm{H} \overline{\mathrm{p}=0} \mathrm{~m}$ is thus approximately 1.0.
6. In the combination which does not include cooling only indoor unit, Calculate the equivalent length pipe by the following when you calculate cooling capacity. $\underline{\text { Overall equivalent length }}=\underline{\text { Equivalent length to main pipe }} \times \underline{0.5}+\underline{\text { Equivalent length after branching }}$
Example:

In the above case (Cooling)
Overall equivalent length $=80 \mathrm{~m} \times 0.5+40 \mathrm{~m}=80 \mathrm{~m}$
The correction factor in capacity when $\mathrm{H} \overline{\mathrm{p}=0 \mathrm{~m}}$ is thus approximately 0.88 .

Explanation of symbols

H_{p} :Level difference (m) between indoor and outdoor units where indoor in inferior position.
$H_{M}^{\rho} \quad$:Level difference (m) between indoor and outdoor units where indoor in superior position.
$L \quad$: Equivalent pipe length (m)
a :Capacity correction factor
[Diameter of pipe (standard size)]

Model	Liquid
REYQ10PY1	$\varnothing 9.5$

2 Capacity correction ratio

2-4 VRVIII heat recovery

REYQ12,18,20,28,30,38,40,42,44P

1. Rate of change in cooling capacity 2. Rate of change in heating capacity

NOTES

1. These figures illustrate the rate of change in capacity of a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions. Moreover, under partial load conditions there is only a minor deviation from the rate of change in capacity shown in the above figures.
2. With this outdoor unit, evaporating pressure constant control when cooling, and condensing pressure constant control when heating is carried out.
3. Method of calculating A / C (cooling/heating) capacity:

The maximum A/C capacity of the system will be either the total A / C capacity of the indoor units obtained from capacity characteristic table or the maximum A / C capacity of outdoor units as mentioned bellow, whichever smaller.
Calculating A/C capacity of outdoor units

- Condition: Indoor unit combination ratio does not exceed 100%.

Maximum A/C capacity of outdoor units $=A / C$ capacity of outdoor units obtained from capacity characteristic table at the 100% combination

> x Capacity change rate due to piping length to the farthest indoor unit

- Condition: Indoor unit combination ratio exceeds 100%.

Maximum A / C capacity of outdoor units $=A / C$ capacity of outdoor units obtained from capacity characteristic table at the combination
X Capacity change rate due to piping length to the farthest indoor unit
4. When overall equivalent pipe length is 90 m or more, the diameter of the main gas pipes (outdoor unit-branch sections) must be increased. When level difference is 50 m or more, the diameter of the main liquid pipe (outdoor unit-branch sections) must be increased.
Diameter of above case]

5. When the main sections of the interunit gas pipe diameters are increased the overall equivalent length should be calculated as follows.(Heating only) Overall equivalent length $=$ Equivalent length to main pipe x Correction factor + Equivalent length after branching
[Choose a correction factor from the following table]

Model	Correction factor	Model	Correction factor
Repolipy	03	Revo389P1	0.4
Requ98Y	0.4	RegQa0Y 1	
Reperaprl		RelQQ2PY	
Reraz8PY		Rerou4py	

(Example) In case of REYQ18PY1

In the above case (Heating)
Overall equivalent length $=80 \mathrm{~m} \times 0.4+40 \mathrm{~m}=72 \mathrm{~m}$
The correction factor in capacity when $\mathrm{H} \overline{\mathrm{p}=0} \mathrm{~m}$ is thus approximately 1.0
6. In the combination which does not include cooling only indoor unit, Calculate the equivalent length pipe by the following when you calculate cooling capacity. $\underline{\text { Overall equivalent length }}=\underline{\text { Equivalent length to main pipe }} \times \underline{0.5}+\underline{\text { Equivalent length after branching }}$
Example:

In the above case (Cooling)
Overall equivalent length $=80 \mathrm{~m} \times 0.5+40 \mathrm{~m}=80 \mathrm{~m}$
The correction factor in capacity when $H \overline{\mathrm{p}=0 \mathrm{~m}}$ is thus approximately 0.88

Explanation of symbols

:Level difference (m) between indoor and outdoor units where indoor in inferior position.
H_{M}^{p} :Level difference (m) between indoor and outdoor units where indoor in superior position
L : Equivalent pipe length (m)
a :Capacity correction facto
[Diameter of pipe (standard size)]

Model	Liquid	Model	Liquid
REYQ12PY1	¢ 12.7	REVQ38PY1	¢ 19.1
REYQ18PY1	¢159	REYQ40PY1	
REYQ26PY1	¢ 19.1	REYQ42PY1	
REYQ28PY1		REYQ44PY1	
REYQ30PY1			

2 Capacity correction ratio

2-4 VRVIII heat recovery

REYQ14P

1. Rate of change in cooling capacity

2. Rate of change in heating capacity

NOTES

1. These figures illustrate the rate of change in capacity of a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions. Moreover, under partial load conditions there is only a minor deviation from the rate of change in capacity shown in the above figures.
2. With this outdoor unit, evaporating pressure constant control when cooling, and condensing pressure constant control when heating is carried out.
3. Method of calculating A/C (cooling/heating) capacity:

The maximum A/C capacity of the system will be either the total A/C capacity of the indoor units obtained from capacity characteristic table or the maximum A / C capacity of outdoor units as mentioned bellow, whichever smaller.

Calculating A/C capacity of outdoor units

- Condition: Indoor unit combination ratio does not exceed 100\%.

Maximum A/C capacity of outdoor units = A/C capacity of outdoor units obtained from capacity characteristic table at the 100\% combination
\times Capacity change rate due to piping length to the farthest indoor unit

- Condition: Indoor unit combination ratio exceeds 100\%.

Maximum A/C capacity of outdoor units $=A / C$ capacity of outdoor units obtained from capacity characteristic table at the combination
X Capacity change rate due to piping length to the farthest indoor unit
4. When overall equivalent pipe length is 90 m or more, the diameter of the main gas pipes (outdoor unit-branch sections) must be increased. When level difference is 50 m or more, the diameter of the main liquid pipe (outdoor unit-branch sections) must be increased.
[Diameter of above case]

Model	Liquid
REYQ14PY1	$\varnothing 15.9$

5. When the main sections of the interunit gas pipe diameters are increased the overall equivalent length should be calculated as follows. (Heating only)
$\underline{\text { Overall equivalent length }}=\underline{\text { Equivalent length to main pipe }} \times \underline{0.3}+\underline{\text { Equivalent length after branching }}$
Example:

In the above case (Heating)
Overall equivalent length $=80 \mathrm{~m} \times 0.3+40 \mathrm{~m}=64 \mathrm{~m}$
The correction factor in cap $\overline{a c i t y}$ when $\mathrm{H} \overline{\mathrm{p}=0 \mathrm{~m}}$ is thus approximately 1.0.
6. In the combination which does not include cooling only indoor unit, Calculate the equivalent length pipe by the following when you calculate cooling capacity. $\underline{\text { Overall equivalent length }}=\underline{\text { Equivalent length to main pipe }} \times \underline{0.5}+\underline{\text { Equivalent length after branching }}$
Example:

In the above case (Cooling)
Overall equivalent length $=80 \mathrm{~m} \times 0.5+40 \mathrm{~m}=80 \mathrm{~m}$
The correction factor in capacity $w \overline{\mathrm{~T}} \mathrm{H} \overline{\mathrm{p}=0 \mathrm{~m}}$ is thus approximately 0.96 .

Explanation of symbols

$\mathrm{H}_{\mathrm{p}} \quad$:Level difference (m) between indoor and outdoor units where indoor in inferior position.
$\mathrm{H}_{\mathrm{M}}^{\mathrm{p}}$:Level difference (m) between indoor and outdoor units where indoor in superior position.
$\mathrm{L} \quad$: Equivalent pipe length (m)
a : Capacity correction factor
[Diameter of pipe (standard size)]

Model	Liquid
REYQ14PY1	$\phi 12.7$

2 Capacity correction ratio

2-4 VRVIII heat recovery

REYQ16P

1. Rate of change in cooling capacity

2. Rate of change in heating capacity

3. These figures illustrate the rate of change in capacity of a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions. Moreover, under partial load conditions there is only a minor deviation from the rate of change in capacity shown in the above figures.
4. With this outdoor unit, evaporating pressure constant control when cooling, and condensing pressure constant control when heating is carried out.
5. Method of calculating A / C (cooling/heating) capacity:

The maximum A / C capacity of the system will be either the total A / C capacity of the indoor units obtained from capacity characteristic table or the maximum A / C capacity of outdoor units as mentioned bellow, whichever smaller.
Calculating A/C capacity of outdoor units

- Condition: Indoor unit combination ratio does not exceed 100\%.
$\underline{\text { Maximum } \mathrm{A} / \mathrm{C} \text { capacity of outdoor units }=\text { A/C capacity of outdoor units obtained from capacity characteristic table at the } 100 \% \text { combination }}$
X Capacity change rate due to piping length to the farthest indoor unit
- Condition: Indoor unit combination ratio exceeds 100%.

Maximum A/C capacity of outdoor units = A/C capacity of outdoor units obtained from capacity characteristic table at the combination
X Capacity change rate due to piping length to the farthest indoor unit
4. When overall equivalent pipe length is 90 m or more, the diameter of the main gas pipes (outdoor unit-branch sections) must be increased When level difference is 50 m or more, the diameter of the main liquid pipe (outdoor unit-branch sections) must be increased.
Diameter of above case]

5. When the main sections of the interunit gas pipe diameters are increased the overall equivalent length should be calculated as follows. (Heating only) Overall equivalent length $=\underline{\text { Equivalent length to main pipe }} \times \underline{0.3}+\underline{\text { Equivalent length after branching }}$
Example:

In the above case (Heating)
Overall equivalent length $=80 \mathrm{~m} \times 0.3+40 \mathrm{~m}=64 \mathrm{~m}$
The correction factor in capacity when $\mathrm{H} \overline{\mathrm{p}=0 \mathrm{~m}}$ is thus approximately 1.0.
6. In the combination which does not include cooling only indoor unit, Calculate the equivalent length pipe by the following when you calculate cooling capacity. $\underline{\text { Overall equivalent length }}=\underline{\text { Equivalent length to main pipe }} \times \underline{0.5}+\underline{\text { Equivalent length after branching }}$
Example:

In the above case (Cooling)
Overall equivalent length $=80 \mathrm{~m} \times 0.5+40 \mathrm{~m}=80 \mathrm{~m}$
The correction factor in capacity $w \overline{h e n} \mathrm{H} \overline{\mathrm{p}=0 \mathrm{~m}}$ is thus approximately 0.93 .

Explanation of symbols

$H_{p} \quad$:Level difference (m) between indoor and outdoor units where indoor in inferior position.
$\mathrm{H}_{\mathrm{M}}^{\mathrm{p}}$:Level difference (m) between indoor and outdoor units where indoor in superior position.
L : Equivalent pipe length (m)
a : Capacity correction factor
[Diameter of pipe (standard size)]

Model	Liquid
REYQ16PY1	$\Phi 127$

REYQ16PY1 $\phi 127$

2 Capacity correction ratio

2-4 VRVIII heat recovery

REYQ20,32,34P

1. Rate of change in cooling capacity

2. Rate of change in heating capacity

NOTES

1. These figures illustrate the rate of change in capacity of a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions. Moreover, under partial load conditions there is only a minor deviation from the rate of change in capacity shown in the above figures.
2. With this outdoor unit, evaporating pressure constant control when cooling, and condensing pressure constant control when heating is carried out.
3. Method of calculating A/C (cooling/heating) capacity:

The maximum A / C capacity of the system will be either the total A / C capacity of the indoor units obtained from capacity characteristic table or the maximum A / C capacity of outdoor units as mentioned bellow, whichever smaller.
Calculating A/C capacity of outdoor units

- Condition: Indoor unit combination ratio does not exceed 100\%.

Maximum A/C capacity of outdoor units = A/C capacity of outdoor units obtained from capacity characteristic table at the 100% combination
\times Capacity change rate due to piping length to the farthest indoor unit

- Condition: Indoor unit combination ratio exceeds 100\%.

Maximum A/C capacity of outdoor units = A/C capacity of outdoor units obtained from capacity characteristic table at the combination
X Capacity change rate due to piping length to the farthest indoor unit
4. When overall equivalent pipe length is 90 m or more, the diameter of the main gas pipes (outdoor unit-branch sections) must be increased. When level difference is 50 m or more, the diameter of the main liquid pipe (outdoor unit-branch sections) must be increased.
[Diameter of above case]

Model	Liquid
REYQ20PY1	$\phi 19.1$
REYQ32PY1	$\phi 22.2$
REYQ34PY1	

5. When the main sections of the interunit gas pipe diameters are increased the overall equivalent length should be calculated as follows. (Heating only) $\underline{\text { Overall equivalent length }}=\underline{\text { Equivalent length to main pipe }} \times \underline{0.4}+\underline{\text { Equivalent length after branching }}$
Example:

Indoor unit

In the above case (Heating)
Overall equivalent length $=80 \mathrm{~m} \times 0.4+40 \mathrm{~m}=72 \mathrm{~m}$
The correction factor in cap $\overline{a c i t y}$ when $\mathrm{H} \overline{\mathrm{p}=0 \mathrm{~m}}$ is thus approximately 1.0.
6. In the combination which does not include cooling only indoor unit, Calculate the equivalent length pipe by the following when you calculate cooling capacity. $\underline{\text { Overall equivalent length }}=\underline{\text { Equivalent length to main pipe }} \times \underline{0.5}+\underline{\text { Equivalent length after branching }}$

Example:

In the above case (Cooling)
Overall equivalent length $=80 \mathrm{~m} \times 0.5+40 \mathrm{~m}=80 \mathrm{~m}$
The correction factor in capacity when $\mathrm{Hp=0m}$ is thus approximately 0.88 .

Explanation of symbols

$\mathrm{H}_{\mathrm{p}} \quad$:Level difference (m) between indoor and outdoor units where indoor in inferior position.
$\mathrm{H}_{\mathrm{M}}^{\mathrm{p}}$:Level difference (m) between indoor and outdoor units where indoor in superior position.
$L \quad$: Equivalent pipe length (m)
a : Capacity correction factor
[Diameter of pipe (standard size)]

Model	Liquid
REYQ20PY1	$\phi 15.9$
REYQ32PY1	$\phi 19.1$
REYQ34PY1	

2 Capacity correction ratio

2-4 VRVIII heat recovery

REYQ24P

1. Rate of change in cooling capacity

2. Rate of change in heating capacity

3. These figures illustrate the rate of change in capacity of a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions. Moreover, under partial load conditions there is only a minor deviation from the rate of change in capacity shown in the above figures.
4. With this outdoor unit, evaporating pressure constant control when cooling, and condensing pressure constant control when heating is carried out.
5. Method of calculating A / C (cooling/heating) capacity:

The maximum A/C capacity of the system will be either the total A / C capacity of the indoor units obtained from capacity characteristic table or the maximum A/C capacity of outdoor units as mentioned bellow, whichever smaller.
Calculating A/C capacity of outdoor units

- Condition: Indoor unit combination ratio does not exceed 100%.

Maximum A / C capacity of outdoor units $=A / C$ capacity of outdoor units obtained from capacity characteristic table at the 100% combination
X Capacity change rate due to piping length to the farthest indoor unit

- Condition: Indoor unit combination ratio exceeds 100%.

Maximum A / C capacity of outdoor units $=A / C$ capacity of outdoor units obtained from capacity characteristic table at the combination
x Capacity change rate due to piping length to the farthest indoor unit
4. When overall equivalent pipe length is 90 m or more, the diameter of the main gas pipes (outdoor unit-branch sections) must be increased. When level difference is 50 m or more, the diameter of the main liquid pipe (outdoor unit-branch sections) must be increased. [Diameter of above case]

Model	Liquid
ReYQ24PY1	$\phi 19.1$

5. When the main sections of the interunit gas pipe diameters are increased the overall equivalent length should be calculated as follows. (Heating only) $\underline{\text { Overall equivalent length }}=$ Equivalent length to main pipe $\times 0.4+$ Equivalent length after branching
Example:

In the above case (Heating)
Overall equivalent length $=80 \mathrm{~m} \times 0.4+40 \mathrm{~m}=72 \mathrm{~m}$
The correction factor in capacity when $\mathrm{H} \overline{\mathrm{p}=0 \mathrm{~m}}$ is thus approximately 1.0.
6. In the combination which does not include cooling only indoor unit, Calculate the equivalent length pipe by the following when you calculate cooling capacity. Overall equivalent length $=\underline{\text { Equivalent length to main pipe }} \times 0.5+$ Equivalent length after branching
Example:

In the above case (Cooling)
Overall equivalent length $=80 \mathrm{~m} \times 0.5+40 \mathrm{~m}=80 \mathrm{~m}$
The correction factor in capacity when $\mathrm{H} \overline{\mathrm{p}=0 \mathrm{~m}}$ is thus approximately 0.91 .

Explanation of symbols

$H_{p} \quad$:Level difference (m) between indoor and outdoor units where indoor in inferior position
$\mathrm{H}_{\mathrm{M}}^{\mathrm{p}}$:Level difference (m) between indoor and outdoor units where indoor in superior position.
$\mathrm{L} \quad$: Equivalent pipe length (m)
a : Capacity correction factor
[Diameter of pipe (standard size)]

Model	Liquid
REYQ24PY1	$\varnothing 15.9$

2 Capacity correction ratio

2-4 VRVIII heat recovery

REYQ36P

1. These figures illustrate the rate of change in capacity of a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions. Moreover, under partial load conditions there is only a minor deviation from the rate of change in capacity shown in the above figures.
2. With this outdoor unit, evaporating pressure constant control when cooling, and condensing pressure constant control when heating is carried out.
3. Method of calculating A / C (cooling/heating) capacity:

The maximum A/C capacity of the system will be either the total A / C capacity of the indoor units obtained from capacity characteristic table or the maximum A / C capacity of outdoor units as mentioned bellow, whichever smaller.
Calculating A/C capacity of outdoor units

- Condition: Indoor unit combination ratio does not exceed 100%.

Maximum A/C capacity of outdoor units = A/C capacity of outdoor units obtained from capacity characteristic table at the 100% combination
X Capacity change rate due to piping length to the farthest indoor unit

- Condition: Indoor unit combination ratio exceeds 100%.

Maximum A/C capacity of outdoor units $=\mathrm{A} / \mathrm{C}$ capacity of outdoor units obtained from capacity characteristic table at the combination
X Capacity change rate due to piping length to the farthest indoor unit
4. When overall equivalent pipe length is 90 m or more, the diameter of the main gas pipes (outdoor unit-branch sections) must be increased. When level difference is 50 m or more, the diameter of the main liquid pipe (outdoor unit-branch sections) must be increased. [Diameter of above case]

Model	Liquid
REYQ36PY1	$\phi 22.2$

5. When the main sections of the interunit gas pipe diameters are increased the overall equivalent length should be calculated as follows. (Heating only)

Example:

In the above case (Heating)
Overall equivalent length $=80 \mathrm{~m} \times 0.4+40 \mathrm{~m}=72 \mathrm{~m}$
The correction factor in capacity when $\mathrm{H} \overline{\mathrm{p}=0 \mathrm{~m}}$ is thus approximately 1.0 .
6. In the combination which does not include cooling only indoor unit, Calculate the equivalent length pipe by the following when you calculate cooling capacity. Overall equivalent length $=$ Equivalent length to main pipe $\times \underline{0.5}+\underline{\text { Equivalent length after branching }}$
Example:

In the above case (Cooling)
Overall equivalent length $=80 \mathrm{~m} \times 0.5+40 \mathrm{~m}=80 \mathrm{~m}$
The correction factor in capacity when $\mathrm{H} \overline{\mathrm{p}=0 \mathrm{~m}}$ is thus approximately 0.92 .

- Explanation of symbols

$H_{p} \quad$ Level difference (m) between indoor and outdoor units where indoor in inferior position.
H_{M} :Level difference (m) between indoor and outdoor units where indoor in superior position.
L : Equivalent pipe length (m)
a :Capacity correction factor
[Diameter of pipe (standard size)]

Model	Liquid
REYQ36PY1	$\phi 19.1$

2 Capacity correction ratio

2-4 VRVIII heat recovery

REYQ46P

1. Rate of change in cooling capacity

2. Rate of change in heating capacity

3. These figures illustrate the rate of change in capacity of a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions. Moreover, under partial load conditions there is only a minor deviation from the rate of change in capacity shown in the above figures.
4. With this outdoor unit, evaporating pressure constant control when cooling, and condensing pressure constant control when heating is carried out.
5. Method of calculating A/C (cooling/heating) capacity:

The maximum A / C capacity of the system will be either the total A / C capacity of the indoor units obtained from capacity characteristic table or the maximum A / C capacity of outdoor units as mentioned bellow, whichever smaller.

Calculating A/C capacity of outdoor units

- Condition: Indoor unit combination ratio does not exceed 100\%.

Maximum A/C capacity of outdoor units = A/C capacity of outdoor units obtained from capacity characteristic table at the 100% combination
\times Capacity change rate due to piping length to the farthest indoor unit

- Condition: Indoor unit combination ratio exceeds 100%.

Maximum A/C capacity of outdoor units = A/C capacity of outdoor units obtained from capacity characteristic table at the combination
X Capacity change rate due to piping length to the farthest indoor unit
4. When overall equivalent pipe length is 90 m or more, the diameter of the main gas pipes (outdoor unit-branch sections) must be increased. When level difference is 50 m or more, the diameter of the main liquid pipe (outdoor unit-branch sections) must be increased. [Diameter of above case]

Model	Liquid
REYQ46PY1	$\phi 22.2$

5. When the main sections of the interunit gas pipe diameters are increased the overall equivalent length should be calculated as follows. (Heating only) Overall equivalent length $=$ Equivalent length to main pipe $\times 0.4+$ Equivalent length after branching

Example:

In the above case (Heating)
Overall equivalent length $=80 \mathrm{~m} \times 0.4+40 \mathrm{~m}=72 \mathrm{~m}$
The correction factor in capacity when $H \overline{\mathrm{p}=0 \mathrm{~m}}$ is thus approximately 1.0
6. In the combination which does not include cooling only indoor unit, Calculate the equivalent length pipe by the following when you calculate cooling capacity. Overall equivalent length $=$ Equivalent length to main pipe $\times 0.5+$ Equivalent length after branching

Example:
 Indoor unit

In the above case (Cooling)
Overall equivalent length $=80 \mathrm{~m} \times 0.5+40 \mathrm{~m}=80 \mathrm{~m}$
The correction factor in cap $\overline{a c i t y}$ when $\overline{\mathrm{Hp}=0 \mathrm{~m}}$ is thus approximately 0.88 .

- Explanation of symbols

$H_{p} \quad$:Level difference (m) between indoor and outdoor units where indoor in inferior position.
H_{M} : Level difference (m) between indoor and outdoor units where indoor in superior position.
$L \quad$: Equivalent pipe length (m)
a :Capacity correction factor
[Diameter of pipe (standard size)]

2 Capacity correction ratio

2-4 VRVIII heat recovery

REYQ48P

1. Rate of change in cooling capacity

2. Rate of change in heating capacity

NOTES

1. These figures illustrate the rate of change in capacity of a standard indoor unit system at maximum load (with the thermostat set to maximum) under standard conditions. Moreover, under partial load conditions there is only a minor deviation from the rate of change in capacity shown in the above figures.
2. With this outdoor unit, evaporating pressure constant control when cooling, and condensing pressure constant control when heating is carried out.
3. Method of calculating A/C (cooling/heating) capacity:

The maximum A/C capacity of the system will be either the total A/C capacity of the indoor units obtained from capacity characteristic table or the maximum A / C capacity of outdoor units as mentioned bellow, whichever smaller.
Calculating A/C capacity of outdoor units

- Condition: Indoor unit combination ratio does not exceed 100\%.

Maximum A/C capacity of outdoor units = A/C capacity of outdoor units obtained from capacity characteristic table at the 100\% combination

> X Capacity change rate due to piping length to the farthest indoor unit

- Condition: Indoor unit combination ratio exceeds 100%.

Maximum A/C capacity of outdoor units = A/C capacity of outdoor units obtained from capacity characteristic table at the combination

> X Capacity change rate due to piping length to the farthest indoor unit
4. When overall equivalent pipe length is 90 m or more, the diameter of the main gas pipes (outdoor unit-branch sections) must be increased. When level difference is 50 m or more, the diameter of the main liquid pipe (outdoor unit-branch sections) must be increased.
[Diameter of above case]

5. When the main sections of the interunit gas pipe diameters are increased the overall equivalent length should be calculated as follows. (Heating only)

Overall equivalent length $=$ Equivalent length to main pipe $\times 0.4+$ Equivalent length after branching
Example:

In the above case (Heating)
Overall equivalent length $=80 \mathrm{~m} \times 0.4+40 \mathrm{~m}=72 \mathrm{~m}$
The correction factor in capacity when $\mathrm{H} \overline{\mathrm{p}=0 \mathrm{~m}}$ is thus approximately 1.0
6. In the combination which does not include cooling only indoor unit, Calculate the equivalent length pipe by the following when you calculate cooling capacity. $\underline{\text { Overall equivalent length }}=\underline{\text { Equivalent length to main pipe }} \times \underline{0.5}+\underline{\text { Equivalent length after branching }}$
Example:

In the above case (Cooling)
Overall equivalent length $=80 \mathrm{~m} \times 0.5+40 \mathrm{~m}=80 \mathrm{~m}$
The correction factor in capacity when $\mathrm{H} \overline{\mathrm{p}=0 \mathrm{~m}}$ is thus approximately 0.88 .

Explanation of symbols

H_{p} :Level difference (m) between indoor and outdoor units where indoor in inferior position.
$H_{M}^{\rho} \quad$:Level difference (m) between indoor and outdoor units where indoor in superior position.
L : Equivalent pipe length (m)
a :Capacity correction factor
[Diameter of pipe (standard size)]

Model	Liquid
REYQ48PY1	$\phi 19.1$

3 Integrated heating capacity coefficient

- The tables do not take account of the reduction in capacity when frost has accumulated or while the defrosting operation is in progress.

The capacity values which take these factors into account, in other words the integrated heating capacity values, can be calculated as follows:

Formula: Integrated heating capacity = A
Value given in table of capacity characteristics $=B$
Integrating correction factor for frost accumulation (kW) = C
$A=B \times C$

- Correction factor for finding integrated heating capacity

Inlet port temperature of heat exchanger (${ }^{\circ} \mathrm{C} / \mathrm{RH} 85 \%$)		-7	-5	-3	0	3	5	7
Integrating correction factor for frost accumulation	REYQ8,10,12PY1	0.97	0.95	0.90	0.86	0.87	0.92	1.00
	REYQ14,16PY1	0.96	0.94	0.89	0.85	0.86	0.91	1.00
	REYQ18~32PY1	0.99	0.97	0.92	0.88	0.89	0.94	1.00
	REYQ34~48PY1	0.98	0.96	0.91	0.87	0.88	0.93	1.00

I note

- It will be seen on the figure on the left that the integrated heating capacity expresses the integrated heating capacity for a single cycle (from defrost operation to defrost operation) in terms of time.
- Please note that when there is an accumulation of snow against the outside surface of the outdoor unit heat exchanger, there will always be a temporary reduction in capacity although this will, of course, vary in degree in accordance with a number of other factors such as the outdoor temperature $\left({ }^{\circ} \mathrm{CDB}\right)$, relative humidity (RH) and the amount of frosting which occurs.

4 Refnet pipe systems

	Liquid side junction	Discharge gas side junction	Suction gas side junction	
$\begin{array}{\|l\|l\|} \substack{0 \\ 0 \\ 0 \\ \text { 笠 }} \end{array}$				

4 Refnet pipe systems

	Liquid side header	Discharge gas side header	Suction gas side header

$\begin{aligned} & \text { 옿 } \\ & \text { d } \\ & 0 . \\ & \text { 察 } \end{aligned}$				（2）
$\begin{aligned} & \text { 도 } \\ & \text { 憲 } \\ & \text { 董 } \end{aligned}$				

（4）（1）

1TW25799－4C

4 Refnet pipe systems

4 Refnet pipe systems

	\square	\square	\gtrless
			®
		\square	$\underset{\sim}{ }$
			 \approx
颚			
㝘			
	206dz\%-H1		

4 Refnet pipe systems

	Liquid side junction	Discharge gas side junction	Suction gas side junction
\%			
[
骨			

Closed pipes					
				(c)	

4 Refnet pipe systems

	Liquid side header	Discharge gas side header	Suction gas side header

				(2)

4 Refnet pipe systems

		$\square \square$	
		区	
	즞	综	
			$\stackrel{\because}{\square}$
	(
	VLOOLdZZWO.JH8	VLISIdZZWO.HH8	

4 Refnet pipe systems

4 Refnet pipe systems

	\square	\square	8
	\rightleftarrows	\square	3
			1
	8		－ 3
		 2	
		 a	
2		λ	
		Δ	 1
			A）
$\begin{aligned} & \text { 䇾 } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	5		71
哭		3	$4-23^{3} a^{4}-7$
告			
		$\begin{aligned} & \text { Hita } \\ & \text { H } \end{aligned}$	
	naseas	emenom	

5 Example of Refnet piping layouts

(

6 Refrigerant pipe selection
 6-1 VRVIII-S

6 Refrigerant pipe selection

6 Refrigerant pipe selection
 6-2 VRVIII

6 Refrigerant pipe selection

6-3 VRVIII heat recovery

Example of connection (Connection of 8 indoor units)			Branch with REFNET joint	Branch with REFNET joint and header	Branch with REFNET header
(1) Piping from outdoor unit to BS unit -(Bold):3 pipes $\left\{\begin{array}{l}\text { Suction gas pipe } \\ \text { HP/LP gas pipe } \\ \text { Liquid pipe }\end{array}\right.$ (2) Piping from BS unit to indoor unit or indoor unit used as cooling only Piping from Refrigerant branch kit to -(Thin):2 pipes. $\left\{\begin{array}{l}\text { (Suction) gas pipe } \\ \text { Liquid pipe }\end{array}\right.$		Single outdoor system $\binom{$ REYQ }{$8 \sim 16}$			Outdoor unit B1 ~B4: BS Unit 1-6 : Indoor unit (Cool/Heat selection possible) 7, 8 : Indoor unit (Cooling only)
(*1) " $_$" Indicate the Outdoor unit multi connection piping kit. (*2) In case of multi outdoor system, re-read "outdoor unit" to "the first Outdoor unit multi connection piping kit" as seen from the indoor unit.		Multi outdoor system $\binom{$ REYQ }{$18 \sim 48}$ (18~48)	First outdoor unit multi connection piping kit B1~B4: BS Unit 1~6 : Indoor unit (Cool/Heat selection possible) 7, 8 : Indoor unit (Cooling only)	B1 ~B5 : BS Unit 1~4, 7, 8: Indoor unit (Cool/Heat selection possible) 5, 6 : Indoor unit (Cooling only)	
		Actual pipe length	Pipe length between outdoor unit (*2) and indoor unit $\leq 165 \mathrm{~m}$		
			Example 8: $\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}+\mathrm{e}+\mathrm{s} \leq 165 \mathrm{~m}$	Example 6]: $\mathrm{a}+\mathrm{b}+\mathrm{l} \leq 165 \mathrm{~m}, 8 \mathrm{8}: \mathrm{a}+\mathrm{m}+\mathrm{n}+\mathrm{p} \leq 165$	xample [8: $\mathrm{a}+\mathrm{o} \leq 165 \mathrm{~m}$
	and indoor unit	Equivalent length	Equvalent pipe length between outdoor unit (*2) and (Assume eqivalent pipe length of REFNET joint to be 0.5 m	or unit $\leq 190 \mathrm{~m}$ (Note 1) of REFNET header to be 1 m , that of BSVQ100, 160 to be	at of BSVQ250 to be 6 m for calculation purposes)
		Total extention length	Total piping length from outdoor unit (*2) to all indoor	< 1000 m	
	Between first outdoor unit multi connection piping kit and outdoor unit (in case of multi system)	Actual and Equivalent pipe length	Actual pipe length from first outdoor unit multi connec Equivalent pipe length from first outdoor unit multi con	piping kit to outdoor unit $\leq 10 \mathrm{~m}$ ction piping kit to outdoor unit $\leq 13 \mathrm{~m}$	Outdoor unit \qquad
Allowable height difference	Between outdoor and indoor units D	Difference in height	Difference in height between outdoor unit and indoor u	$(\mathrm{H} 1) \leq 50 \mathrm{~m}$ (Max 40m if the outdoor unit is below)	
	Between indoor and indoor units D	Difference in height	Difference in height between adjacent indoor units (H)	$\leq 15 \mathrm{~m}$	
	Between outdoor and outdoor units D	Difference in height	Difference in height between adjacent outdoor units (H3)	$\leq 5 \mathrm{~m}$	
Allowable length after the branch		Actual pipe length	Actual pipe length from first refrigerant branch kit (either REFNET joint or REFNET header) to indoor unit $\leq 40 \mathrm{~m}$ (Note 2)		

6 Refrigerant pipe selection

6-3 VRVIII heat recovery

6 Refrigerant pipe selection

6-3 VRVIII heat recovery

6 Refrigerant pipe selection

6-4 Piping thickness

Piping diameter	Material	Minimum thickness $[\mathrm{mm}]$
$\varnothing 6.4$	0	0.8
$\varnothing 9.5$	0	0.8
$\varnothing 12.7$	0	0.8
$\varnothing 15.9$	0	0.99
$\varnothing 19.1$	$1 / 2 \mathrm{H}$	0.8
$\varnothing 22.2$	$1 / 2 \mathrm{H}$	0.8
$\varnothing 25.4$	$1 / 2 \mathrm{H}$	0.88
$\varnothing 28.6$	$1 / 2 \mathrm{H}$	0.99
$\varnothing 31.8$	$1 / 2 \mathrm{H}$	1.10
$\varnothing 348$	$1 / 2 \mathrm{H}$	1.21
$\varnothing 38.1$	$1 / 2 \mathrm{H}$	1.32
$\varnothing 41.3$	$1 / 2 \mathrm{H}$	1.43

:O : annealed
$1 / 2 \mathrm{H}$: half-hard
For half hard pipes the maximum allowed tensile stress is $61 \mathrm{~N} / \mathrm{mm}^{2}$. For this reason the 0.2% proof strength of the half hard pipe shall be minimum $61 \mathrm{~N} / \mathrm{mm}^{2}$.
The bending radius is more than or equal to 3 times the diameter of the pipe.

Daikin's unique position as a manufacturer of air conditioning equipment, compressors and refrigerants has led to its close involvement in environmental issues. For several years Daikin has had the intension to become a leader in th has had the is products that have limited impar provision of products that have aimited impac on the environment. This challenge demands
the eco design and development of a wide the eco design and development of a wide
range of products and an energy management range of products and an energy management
system, resulting in energy conservation and a reduction of waste.

DAIKIN EUROPE N.V.

Naamloze Vennootschap
Zandvoordestraat 300
B-8400 Oostende, Belgium
www.daikin.eu
BTW: BE 0412120336
RPR Oostende

Daikin Europe N.V. is approved by LRQA for its Quality Management System in accordance with the ISO9001 standard. ISO9001 pertains to quality assurance regarding design, development, manufacturing as well as to services related to the product.

ISO14001 assures an effective environmental management system in order to help protect human health and the environment from the potential impact of our activities, products and services and to assist in maintaining and improving the quality of the environment.

Daikin units comply with the European regulations that guarantee the safety of the product.

VRV products are not within the scope of the Eurovent certification programme.

The present publication is drawn up by way of information only and does not constitute an offer binding upon Daikin Europe N.V.. Daikin Europe N.V. has compiled the content of this publication to the best of its knowledge. No express or implied warranty is given for the of its knowledge. No express or implied warranty is given for the completeness, accuracy, reliability or fitness for particular purpose of its content and the products and services presented therein. Specifications are subject to change without prior notice. Daikin Europe N.V. explicitly rejects any liability for any direct or indirect damage, In the broadest sense, arising from or related to the use and/or interpretation of this publication. All content is copyrighted by Daikin Europe N.V..

