

Daikin Europe NV

Table of Contents

1 Introduction

1.1 About This Manual v

Part 1 System Outline 1-1

1 General Outline

- 1.1 What Is in This Chapter 1-3
- 1.2 Technical Specifications 1-4
- 1.3 Electrical Specifications 1-7
- 1.4 Outlook Drawing 1-8

2 Piping Layout

- 2.1 What Is in This Chapter 1-92.2 Functional Diagram Refrigeration Circuit 1-10

3 Wiring Layout

- 3.1 What Is in This Chapter 1-13
- 3.2 Switch Box Layout 1-14
- 3.3 Wiring Diagrams 1-15
- 3.4 Main PCB Layout for Indoor Units FTX25GV1NB and FTX35GV1NB 1-17
- 3.5 Main PCB Layout for Outdoor Units RX25GV1NB and RX35GV1NB 1-20

Part 2 Functional Description 2-1

1 General Functionality

1.1 What Is in This Chapter 2-3 1.2 Functions of Thermistors 2-4 1.3 Operating Modes 2-7 1.4 Frequency Principle 2-8 1.5 Swing Compressor 2-11 1.6 Reluctance DC Motor 2-12 1.7 Defrost Control 2-14 1.8 Forced Operation Mode 2-15 1.9 Wide-angle Flaps, Diffuser, Louvres and Autoswing 2-16 1.10 Step Flow 2-17 1.11 Fan Speed Control for Indoor Units 2 - 191.12 Fan Speed Control for Outdoor Units 2-20 1.13 General Functions 2-21 1.14 Frequency Control 2-23 1.15 Expansion Valve Control 2-24 1.16 Other Control 2-26

Part 3 Troubleshooting 3-1

1 Troubleshooting

1.1 What Is in This Chapter3-31.2 Overview of General Cases3-41.3 Safeties3-6

2 Overview of General Problems

2.1 What Is in this Chapter 3-9
2.2 No Operation (Operation Lamp Off) 3-10
2.3 Poor Cooling or Heating Effect 3-12
2.4 Operation Stop Through Breaker 3-13
2.5 Abnormal Operation Sound and Vibration 3-15
2.6 Other Problems 3-17
2.7 Faulty Four-way Valve 3-18

3 Overview of Fault Indications on Indoor Units

- 3.1 What Is in this Chapter 3-23
- 3.2 Faulty Indoor PCB 3-24
- 3.3 Freeze-up Prevention or High Pressure Control 3-26

3-31

- 3.4 Fan Motor Abnormality 3-28 3.5 Thermistor Abnormality 3-30
- 3.5 Thermistor Abnormality 3-30 3.6 Faulty Power Supply or Indoor PCB
- 3.7 Signal Transmission Error 3-33

4 Overview of Fault Indications on Outdoor Units

- 4.1 What Is in this Chapter 3-35 4.2 Insufficient Gas Detection 3-36 4.3 Low Voltage or Main Circuit Overvoltage 3-38 4.4 Overload Activation 3-40 4.5 Discharge Pipe Temperature Abnormality 3-42 4.6 Compressor Start-up Error 3-43 4.7 Radiation Fin Temperature Rise 3-45 4.8 Current Transformer Error 3-47 4.9 Output Current Error 3-49 4.10 Input Overcurrent Error 3-51 4.11 Electrical Box Temperature Rise 3-53 4.12 Faulty Outdoor PCB 3-55 4.13 Thermistor Abnormality 3-56
- 4.14 Faulty Outdoor PCB and Transmitting-receiving Circuit 3-57

5 Additional Checks and Repair for Troubleshooting

- 5.1 What Is in This Chapter 3-59
 5.2 Checking the Indoor Units 3-60
 5.3 Checking the Outdoor Units 3-62
 5.4 Repair for Indoor Units 3-69
- 5.5 Repair for Outdoor Units 3-82

Part 4 Commissioning and Test Run 4-1

1 Pre-Test Run Checks

- 1.1 What Is in This Chapter 4-3
- 1.2 Checks for Test Run 4-4
- 1.3 Setting the Remote Controller 4-5

2 Test Run & Operation Data

2.1 What Is in This Chapter 4-7
2.2 General Operation Data 4-8
2.3 Operation Range 4-9
2.4 Test Run from the Remote Controller

4-10

Part 5 Maintenance 5-1

1 Maintenance

1.1 What Is in This Chapter5-31.2 Maintenance for Indoor Units5-41.3 Maintenance for Outdoor Units5-51.4 General Maintenance5-6

Appendix Drawings A-1

1 Introduction

1.1 About This Manual

Split Inverter

The Split Inverter room air conditioners contain an outdoor unit RX25GV1NB controlling indoor unit FTX25GV1NB or an outdoor unit RX35GV1NB controlling indoor unit FTX35GV1NB. They are designed for cooling and heating applications.

Before starting up the unit for the first time, make sure it has been properly installed. Consult the Installation manual and 'Pre-Test Run Checks' on page 4-3.

You will find the following tools at the back of the manual:

- a list of drawings. Refer to Appendix Drawings.
- an index. Refer to Index.

Usage of the manual

The present service manual gives you all the information you need to do the necessary repair and maintenance tasks for the Split Inverter room air conditioners. It is intended for and should only be used by qualified engineers.

It is not intended to replace the technical know-how acquired through training and experience.

Using icons

Icons are used to attract your attention to specific information. The meaning of each icon is described in the table below:

lcon	Type of information	Description
8	Note	A 'note' provides information that is not indispensable, but may nevertheless be valuable to you such as tips and tricks.
	Caution	A 'caution' is used when there is danger that you, through incorrect manipulation, may damage equipment, loose data, get an unexpected result or have to restart (part of) a procedure.
0	Warning	A 'warning' is used when there is danger of personal injury.
	Reference	A 'reference' guides you to other places in this binder or in this manual, where you will find additional information on a specific topic.

Using symbols

The following symbols are used to clarify the troubleshooting part:

Symbol	Description
•	LED is off
0	LED is on
0	Flashing LED
*	Varies depending on the cases.
_	Not used for troubleshooting.

Part 1 System Outline

This part outlines all the relevant elements in an installation of the Split Inverter room air conditioners. Once all the elements of the installation are described in short and the installation set-up is understood, a functional description of all elements will be given in the next parts of this book.

What is in this part?

This part contains the following chapters:

Торіс	See page
1 – General Outline	page 1-3
2 – Piping Layout	page 1-9
3 – Wiring Layout	page 1-13

1

1 General Outline

1.1 What Is in This Chapter

Introduction In this chapter you will find the outlook drawing and the installation outline of the indoor units FTX25GV1NB, FTX35GV1NB and the outdoor units RX25GV1NB, RX35GV1NB. Overview This chapter covers the following topics: Topic See page 1.2 – Technical Specifications page 1-4 1.3 – Electrical Specifications page 1-7 1.4 – Outlook Drawing page 1-8

1.2 Technical Specifications

Unit combination

ſ

In the following table you will find the technical specifications of the total units:

Indoor units	FTX25GV1NB RX25GV1NB		FTX35GV1NB			
Outdoor units			RX35GV1NB			
cooling capacity	min./nominal/max.	0.9/2.6/3.1 kW		0.9/3.5/3.6 kW		
heating capacity	min./nominal/max.	0.9/3.6	/4.6 kW	0.9/4.2/	/5.1 kW	
moisture removal		1.4 l/h	-	2.3 l/h	-	
running current	cooling/heating	4.0 A	4.9 A	6.4 A	6.2 A	
power consumption		865 W	1,075 W	1,410 W	1,420 W	
power factor		94.0 %	95.4 %	95.8 %	96.8 %	
COP		3.01	3.35	2.48	3.04	
piping connections	liquid	ø 6.4	1 mm	ø 6.4	mm	
	gas	ø 9.5	5 mm	ø 12.	7 mm	
	drain	ø 18.	0 mm	ø 18.	0 mm	
maximum interunit pip	ing length	25 m (20 g/m additional charge for piping length exceeding 10 m)				
minimum interunit pipi	ng length	2.5 m				
maximum installation I	evel difference	15 m				
heat insulation		both liquid and gas pipe				
n° of wiring connectior	3 for power supply, 4 for interunit wiring					

Cooling capacity

The cooling capacity is based on indoor temperature of 27 °CDB, 19 °CWB and outdoor temperature of 35 °CDB, 24 °CWB. Equivalent reference piping length 7.5 m.

Heating capacity

The heating capacity is based on indoor temperature of 20 °CDB and outdoor temperature of 7 °CDB, 6 °CWB. Equivalent reference piping length 7.5 m.

5

Indoor units

In the following table you will find the technical specifications for the indoor units:

Features front panel colour			FTX25GV1NB FTX35G		GV1NB	
			almond white			
air flow rate	cooling/heating	Н	7.5 m³/min	8.4 m³/min	7.9 m³/min	8.4 m³/min
		М	6.4 m³/min	7.1 m³/min	6.8 m³/min	7.1 m³/min
		L	5.3 m³/min	5.9 m³/min	5.7 m³/min	5.9 m³/min
fan	type	1		cross f	low fan	1
	motor output		13 W 13 W		W	
speed		5 steps and auto				
air direction control			right, left, horizontal and downwards			
air filter			removable / washable / mildew proof			
running current cooling/heating			0.16 A			
power consumption cooling/heating		35 W				
power factor cooling/heating		95.1 %				
temperature control			microcomputer control			
dimensions (HxWxD)			250 x 750 x 180 mm³			
weight			7 kg			
sound pressure level (H/L)	cooling/heating		38/30 dBA	38/30 dBA	39/31 dBA	39/31 dBA

Outdoor units

1

In the following table you will find the technical specifications of the outdoor units:

Features		RX25G	V1NB	RX35GV1NB			
casing colour		ivory white					
compressor	type	hermetically sealed swing type					
	model	1YC23ZXD					
	motor output	750	W	1,000 W			
refrigerant oil	model		SUNISC) 4GS-DI			
	charge	0.35	51	0.3	5		
refrigerant	model		R·	-22			
	charge	0.9 kg		0.9 kg			
air flow rate	cooling/heating	24.5/14.5 m ³ /min	21/12.5 m ³ /min	24.5/14.5 m ³ /min	21/12.5 m ³ /min		
fan	type	prop		peller			
	motor output		2 W				
running current	cooling/heating	3.84 A	4.74 A	6.24 A	6.04 A		
power consumption	cooling/heating	830 W	1,040 W	1,375 W	1,385 W		
power factor	cooling/heating	94.0 %	95.4 %	95.8 %	96.8 %		
starting current cooling/heating		4.9 A		6.4 A			
dimensions (HxWxD)	550 x 695 x 245 mm³					
weight		36 kg		36 kg			
sound pressure level	cooling/heating	45 dBA	46 dBA	46 dBA	47 dBA		

1.3 Electrical Specifications

Unit combination

The following table gives an overview of the electrical specifications of the indoor-outdoor unit combinations:

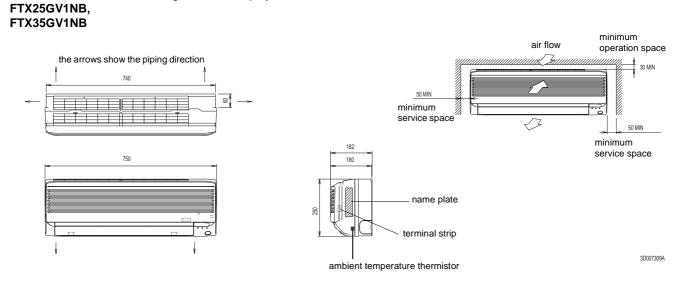
Indoor unit		FTX25GV1NB	FTX35GV1NB		
Outdoor unit		RX25GV1NB	RX35GV1NB		
frequency		50 Hz			
voltage		230	o V		
power voltage	voltage range	207-253 V			
	minimum circuit amperage (MCA)	11.5 A			
	maximum fuse amperage (MFA)	12 A			
compressor	rated load amperage (RLA)	3.16 A 5.96 A			
outdoor fan motor (OFM) fan motor rated output		22 W			
	full load amperage (FLA)	0.28 A			
indoor fan motor (IFM)	fan motor rated output	13 W			
full load amperage (FLA)		0.16 A			

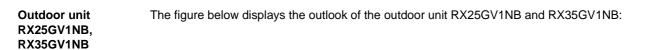
Note

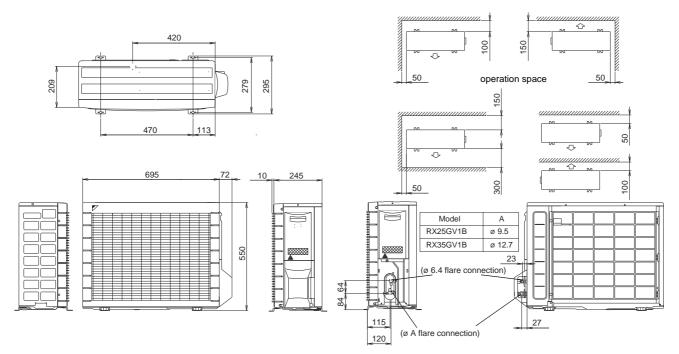
The following list explains some of the items in the table above:

- The rated load amperage (RLA) is based on the following conditions: indoor temperature: 27 °CDB / 19 °CWB outdoor temperature: 35 °CDB.
- Maximum allowable voltage (MFA) imbalance between phases is 2 %.
- Select the wire size based on a larger value of the minimum circuit amperage (MCA) or total overcurrent amperage (TOCA).
- Instead of a fuse, use a circuit breaker.
 - Voltage range:
 The units are suitable for use on electrical systems where the voltage supplied to unit terminals is not below or above listed operation limits.

1.4 Outlook Drawing


Drawings


Indoor unit,


The following drawings indicate the following important items:

- dimensions
- service space
- operation space

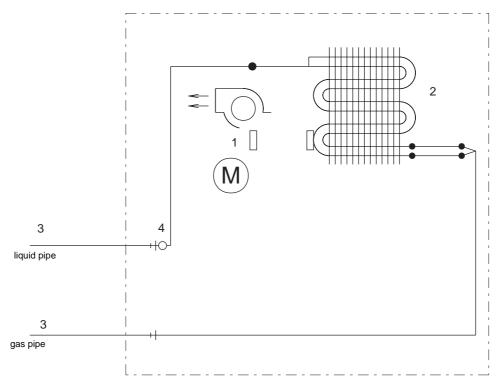
The figure below displays the outlook of the indoor unit FTX25GV1NB and FTX35GV1NB:

2 Piping Layout

2.1 What Is in This Chapter

 Introduction
 This chapter explains the different parts of the internal refrigeration circuit.

 Overview
 This chapter covers the following topics:

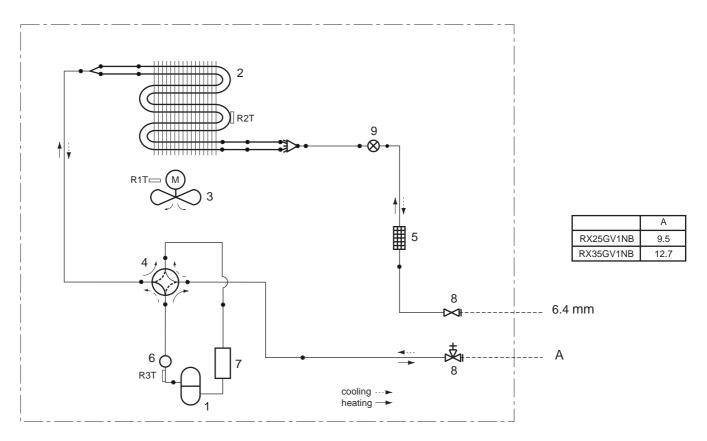

 Topic
 See page

 2.2 – Functional Diagram Refrigeration Circuit
 page 1-10

1

2.2 Functional Diagram Refrigeration Circuit

Functional diagram indoor unit The figure below displays the functional diagram of the refrigeration circuit of the indoor units FTX25GV1NB and FTX35GV1NB:


Main parts refrigeration circuit

The numbers in the table below refer to the numbers in the piping diagram above:

N°	Part name	Function				
1	Fan motor	The fan motor is a phase controlled 5 step motor. An automatic con- trol is available.				
2	Heat exchanger	The heat exchanger is of the multi louvre fin type. Hi-X-tubes and coated waffle louvre fins are used.				
3	Field piping connections	The copper tube of the field piping depends on the model of the indoor unit:				
		Models	Copper tube liquid pipe	Copper tube gas pipe		
		FTX25GV1NB	6.4 mm	9.5 mm		
		FTX35GV1NB	6.4 mm	12.7 mm		

Functional diagram outdoor unit

The figure below displays the functional diagram of the refrigeration circuit of the outdoor units RX25GV1B and RX35GV1NB:

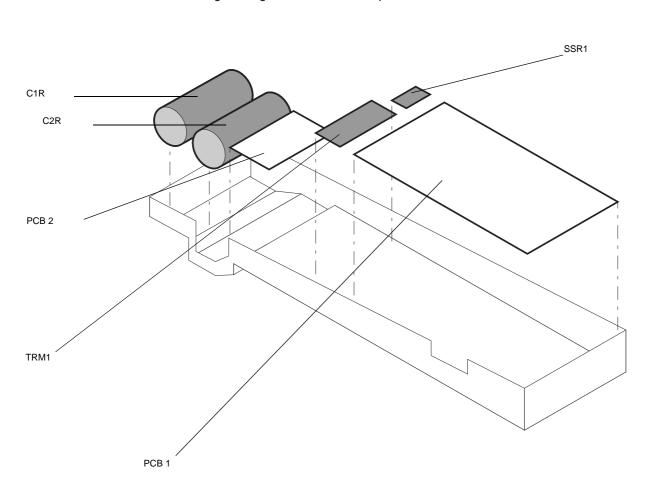
Main parts refrigeration circuit

The numbers in the table below refer to the numbers in the piping diagram above.

N°	Part name	Function
1	Compressor	The compressor is of the vertical hermetically sealed swing type operated by inverter control.
2	Heat exchanger	The heat exchanger is of the multi louvre fin type. Hi-X-tubes and coated waffle louvre fins are used.
3	Fan motor	Double-speed motor.
4	Four-way valve	The four-way valve is energized during cooling and defrosting.
5	Filter	The filter collects impurities, which may enter the system during installation and also avoids blockage of the capillaries and other fine mechanical parts of the unit.
6	Muffler	The muffler absorbs the refrigerant noise from the compressor.
7	Accumulator	The accumulator separates the gas from the liquid in order to pro- tect the compressor against liquid pumping.
8	Gas line stop valve	The gas line stop valves are used as shut-off valves in case of a pump-down. The gas line stop valves are equipped with connectors to measure the pressure.
9	Motor operated expansion valve	The opening of the expansion valve is electronically controlled to enable a good performance.

3 Wiring Layout

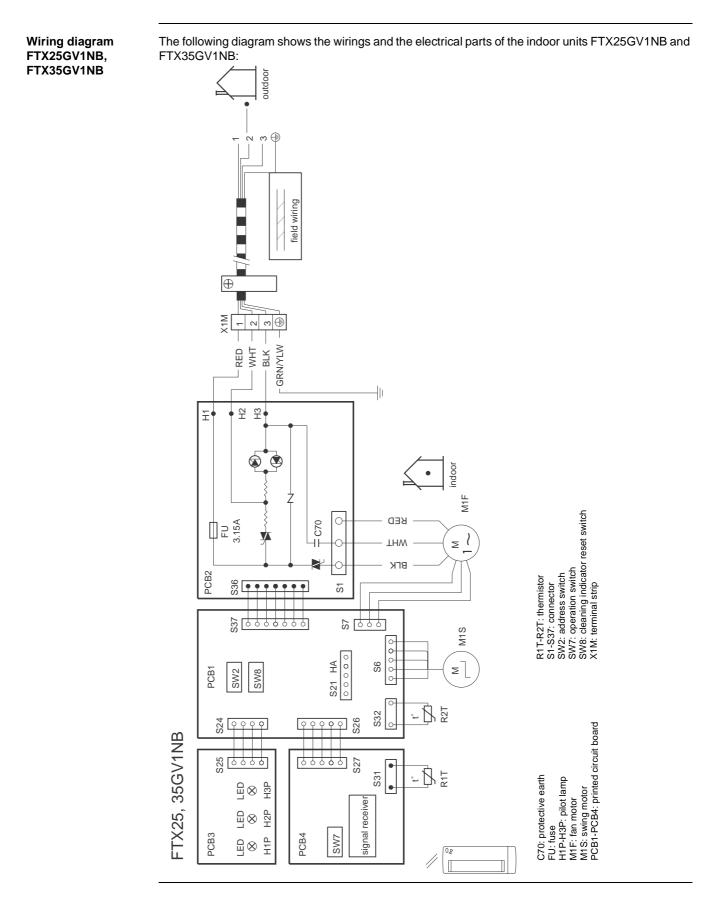
3.1 What Is in This Chapter


Introduction	This chapter guides you through the switch box and the wiring diagrams.					
Overview	This chapter covers the following topics:					
	Торіс	See page				
	3.2 – Switch Box Layout	page 1-14				
	3.3 – Wiring Diagrams	page 1-15				
	3.4 – Main PCB Layout for Indoor Units FTX25GV1NB and FTX35GV1NB	page 1-17				
	3.5 – Main PCB Layout for Outdoor Units RX25GV1NB and RX35GV1NB	page 1-20				

3.2 Switch Box Layout

1

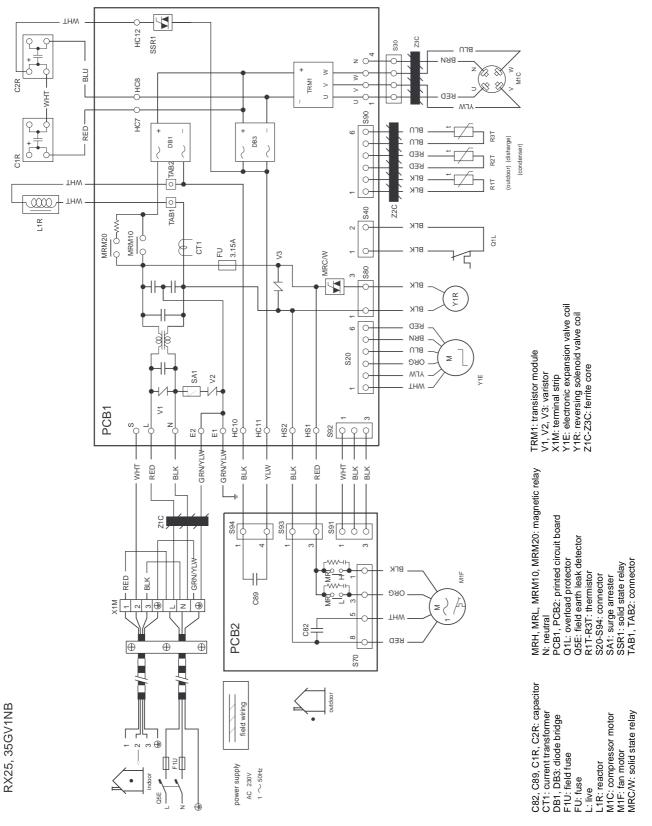
The following drawing shows the main components of the switch box:

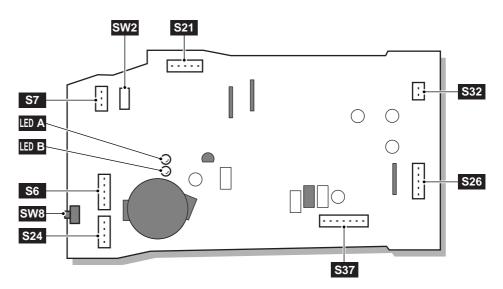


Functionality

The following table explains the items in the drawing above:

Item	Explanation
C1R, C2R	capacitors. Refer to 'Capacitor voltage check' on page 3-63.
PCB 1	printed circuit board 1. Refer to 'Main board PCB 1' on page 1-20.
PCB 2	printed circuit board 2. Refer to 'Main board PCB 2' on page 1-21.
TRM1	transistor module. Refer to 'Power transistor check' on page 3-63, 'Power transis- tor output current check' on page 3-64 and 'Power transistor output voltage check' on page 3-65.
SSR1	solid state relay. Refer to 'SSR1 check' on page 3-68.

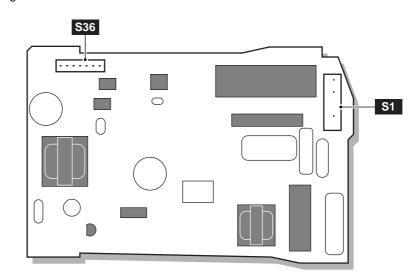

3.3 Wiring Diagrams


Wiring diagram RX25GV1NB, RX35GV1NB

The following diagram shows the wirings and the electrical parts of the outdoor units RX25GV1NB and RX35GV1NB:

3.4 Main PCB Layout for Indoor Units FTX25GV1NB and FTX35GV1NB

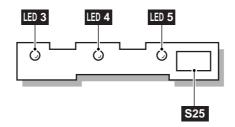
Main board PCB 1 The drawing below shows PCB 1 of the indoor units FTX25GV1NB and FTX35GV1NB:


Symbol	Description
S6	connector for swing motor (lower horizontal flap) M1S
S7	connector for control of fan speed M1F
S21	connector for centralized control to 5-rooms KRC72
S24	communication connector between PCB 1 and PCB 3
S26	communication connector between PCB 1 and PCB 4
S32	connector for indoor heat exchanger thermistor R2T
S37	communication connector between PCB 1 and PCB 2
SW2	address switch
SW8	reset switch for air filter
LED A	fault indication
LED B	fault indication

Refer to 'Wiring diagram FTX25GV1NB, FTX35GV1NB' on page 1-15 for more information concerning this PCB board.

1

Main board PCB 2 The drawing below shows PCB 2 of the indoor units FTX25GV1NB and FTX35GV1NB:

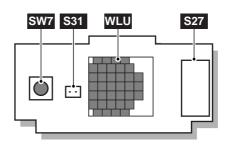

Symbol	Description			
S1	connector fan motor M1F			
S36	communication connector between PCB 2 and PCB 1			

Refer to 'Wiring diagram FTX25GV1NB, FTX35GV1NB' on page 1-15 for more information concerning this PCB board.

Main board PCB 3

The drawing below shows PCB 3 of the indoor units FTX25GV1NB and FTX35GV1NB:

Symbol	Description
S25	communication connector between PCB 3 and PCB 1
LED 3	ON / OFF indication (H1P on wiring)
LED 4	time clock indication (H2P on wiring)
LED 5	filter indication (H3P on wiring)


Ľ

Refer to 'Wiring diagram FTX25GV1NB, FTX35GV1NB' on page 1-15 for more information concerning this PCB board.

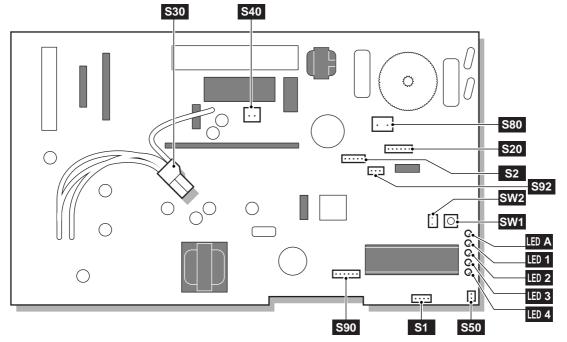
í

Main board PCB 4

The drawing below shows PCB 4 of the indoor units FTX25GV1NB and FTX35GV1NB:

Symbol	Description
S27	communication connector between PCB 4 and PCB 1
S31	connector for indoor ambient temperature thermistor R1T
SW7	emergency operation switch
WLU	signal receiver

Ľ

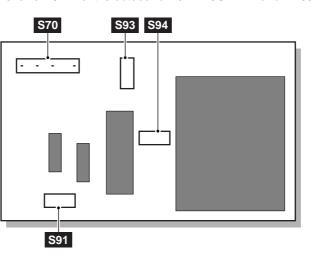

Refer to 'Wiring diagram FTX25GV1NB, FTX35GV1NB' on page 1-15 for more information concerning this PCB board.

1

3.5 Main PCB Layout for Outdoor Units RX25GV1NB and RX35GV1NB

Main board PCB 1

The drawing below shows PCB 1 of the outdoor units RX25GV1NB and RX35GV1NB:



Symbol	Description
S1	factory use
S2	factory use
S20	connector for expansion valve of room Y1E
S30 (floating)	connector for compressor motor M1C
S40	connector for overload protector Q1L
S50	cutting wire for long pipe
S80	connector for 4-way valve Y1R
S90	connector for outdoor ambient temperature thermistor R1T (1-2)
	connector for outdoor heat exchanger thermistor R2T (3-4)
	connector for discharge pipe thermistor R3T (5-6)
S92	communication connector between PCB 1 and PCB 2
SW1	forced operation switch (ON/OFF)
SW2	forced operation connector (cooling/heating)
LED A	
LED 1	fault indication
LED 2	
LED 3	
LED 4	

Refer to 'Wiring diagram RX25GV1NB, RX35GV1NB' on page 1-16 for more information concerning this PCB board.

Main board PCB 2 The drawing below shows PCB 2 of the outdoor units RX25GV1NB and RX35GV1NB:

Symbol	Description
S70	connector for fan motor M1F
S91	communication connector between PCB 2 and PCB 1
S93	communication connector between PCB 2 and PCB 1
S94	communication connector between PCB 2 and PCB 1

Refer to 'Wiring diagram RX25GV1NB, RX35GV1NB' on page 1-16 for more information concerning this PCB board.

1

Part 2 Functional Description

Introduction	used as background information for troubleshooting.				
What is in this part?					
	Торіс	See page			
	1 – General Functionality	page 2-3			

1 General Functionality

1.1 What Is in This Chapter

Introduction

This chapter details on the control functions of the system. Understanding these functions is vital when diagnosing a malfunction is related to the functional control.

Overview

This chapter covers the following topics:


Торіс	See page
1.2 – Functions of Thermistors	page 2-4
1.3 – Operating Modes	page 2-7
1.4 – Frequency Principle	page 2-8
1.5 – Swing Compressor	page 2-11
1.6 – Reluctance DC Motor	page 2-12
1.7 – Defrost Control	page 2-14
1.8 – Forced Operation Mode	page 2-15
1.9 – Wide-angle Flaps, Diffuser, Louvres and Autoswing	page 2-16
1.10 – Step Flow	page 2-17
1.11 – Fan Speed Control for Indoor Units	page 2-19
1.12 – Fan Speed Control for Outdoor Units	page 2-20
1.13 – General Functions	page 2-21
1.14 – Frequency Control	page 2-23
1.15 – Expansion Valve Control	page 2-24
1.16 – Other Control	page 2-26

1.2 Functions of Thermistors

```
Location of thermistors
```

9

The thermistors on the drawing below are used to control the system. This control secures a proper cooling and prevents problems of the unit:

Frequency control The following table shows the thermistors that control the frequency:

Controls	switch box thermistor	Discharge pipe thermistor	Outdoor heat exchanger thermistor	Outdoor ambient temperature thermistor	Indoor ambient temperature thermistor	Indoor heat exchanger thermistor
Symbol	R4T	R3T	R2T	R1T	R1T	R2T
Discharge tempera- ture control. Refer to page 2-23.	_	0	-	_	_	_
Freeze-up preven- tion. Refer to page 2-23.	_	_	-	_	0	_
Peak cut off. Refer to page 2-23.	-	-	-	-	0	-
Control tempera- ture switch box. Refer to page 2-26.	0	_	-	_	_	_
Maximum frequency control in function of outdoor ambient temperature. Refer to page 2-23.	_	-	0	-	_	_

2–4

Controls	switch box thermistor	Discharge pipe thermistor	Outdoor heat exchanger thermistor	Outdoor ambient temperature thermistor	Indoor ambient temperature thermistor	Indoor heat exchanger thermistor
Defrost. Refer to page 2-14.	_	_	0	0	_	0
High pressure limi- tation in heating. Refer to page 2-23.	_	_	0	_	_	0

with $O\!\!:$ available functions and _: no available functions.

2

Expansion valve control

The following table shows the thermistors that control the expansion valve:

2

Thermistors	Symbol	Defrost operation	Disconnected discharge pipe control	High discharge temperature	Feed back control
Outdoor ambient temperature thermistor	R1T	0	-	_	0
Outdoor heat exchanger thermistor	R2T	0	O (cooling)	-	_
Discharge pipe thermistor	R3T	_	0	0	0
switch box thermistor	R4T	_	_	_	_
Indoor ambient temperature thermistor	R1T	_	_	_	_
Indoor heat exchanger thermistor	R2T	_	O (heating)	_	0

with $O\!\!:$ available functions and _: no available functions.

2

1.3 Operating Modes

Modes

There are two operating modes:

- normal operating mode
- forced operating mode.

Overview

The following table shows the different control modes of the Split inverter room air conditioners:

Mode	Item		
Normal operating mode	Cooling		
	Dry keep		
	Heating		
	Defrosting (automatic)		
	Stop mode:		
	Pre-heat operation. Refer to 'Pre-heat operation' on page 2-21.		
	■ Stop		
Forced operating mode	Forced cooling		
	Forced heating		

i

The outdoor unit retains the operating mode, when the thermostat is switched off.

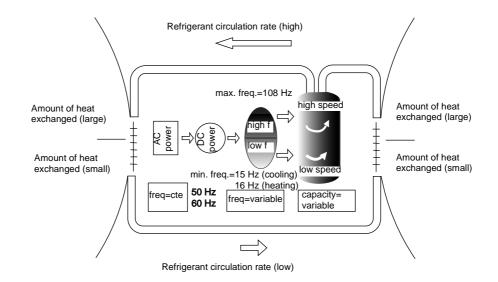
1.4 Frequency Principle

Main control parameters The compressor is frequency-controlled during normal operation. The target frequency is set by the following 2 parameters coming from the operating indoor unit:

- the load condition of the operating indoor unit
- the difference between the room temperature and the set temperature.

Additional control parameters

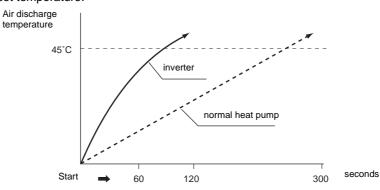
The target frequency is adapted by additional parameters in the following cases:


- frequency limits
- initial settings
- forced cooling/heating operation.

Inverter principle

To regulate the capacity, a frequency control is needed. The inverter makes it possible to vary the rotation speed of the compressor. The following table explains the conversion principle:

Phase	Description					
1	The single phase power supply in AC is converted into DC.					
2	The single phase power supply DC is converted into a three phase shopped DC voltage with a variable frequency.					
	When the frequency increases, the rotation speed of the compressor increases resulting in an increased refrigerant circulation. This leads to a higher amount of the heat exchange per unit.					
	When the frequency decreases, the rotation speed of the compressor decreases resulting in a decreased refrigerant circulation. This leads to a lower amount of the heat exchange per unit.					


Drawing of inverter The following drawing shows a schematic view of the inverter principle:

Inverter features

The inverter provides the following features:

- The regulating capacity can be changed according to the changes in the outside temperature and cooling/heating load.
- Quick heating and quick cooling The compressor rotational speed is increased when starting the heating (or cooling). This enables a quick set temperature.

- Even during extreme cold weather, the high capacity is achieved. It is maintained even when the outside temperature is 0°C.
- Comfortable air conditioning
 A detailed adjustment is integrated to ensure a fixed room temperature. It is possible to air condition with a small room temperature variation.
- Energy saving heating and cooling Once the set temperature is reached, the energy saving operation enables to maintain the room temperature at low power.

Frequency limits

The following table shows the functions that define the minimum and maximum frequency:

Frequency limits	Limited during the activation of following functions
Low	 four way valve operation compensation. Refer to page 2-26. compressor lock prevention. DC inverter control.
High	 high fin temperature control. Refer to page 2-23. discharge pipe temperature control. Refer to page 2-23. low outdoor temperature control. Refer to page 2-23. high pressure limitation. Refer to page 2-23. peak cut off. Refer to page 2-23. freeze-up prevention. Refer to page 2-23. defrost control. Refer to page 2-14.

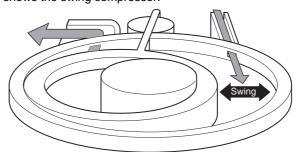
Initial setting

The initial frequency is automatically set in the following cases:

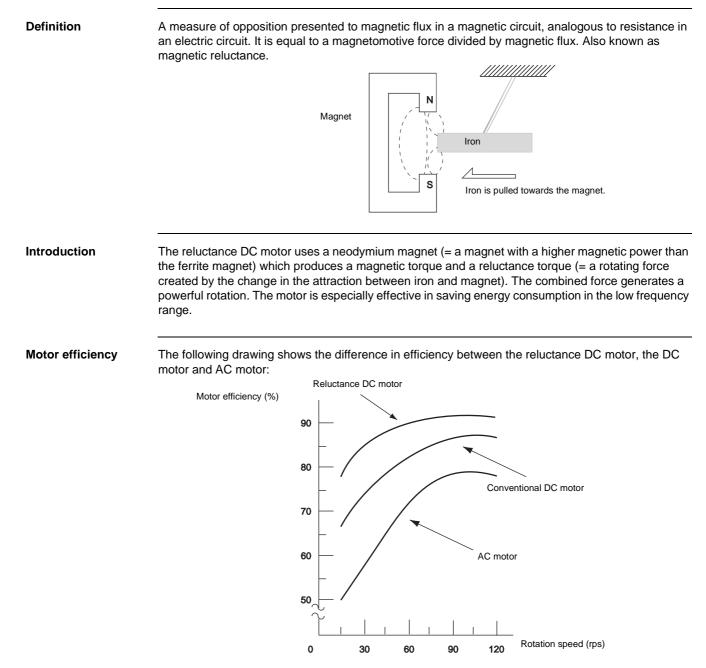
- compressor start (except for defrost)
- compressor start after defrost reset
- change-over from cooling to heating based on the outdoor ambient temperature and discharge pipe temperature.

Forced cooling/heating operation For more information, refer to 'Forced mode' on page 2-15.

1.5 Swing Compressor

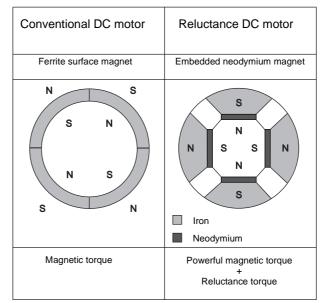

Features

The following list shows the features of the swing compressor:


- The roller and blade are integrated to prevent friction. This eliminates refrigerant leakage and provides high energy efficiency. The suction and compression process is performed by a swinging movement of the roller.
- The swing compressor has 1 piston.
- The innovative structure adapts the use of HFC-refrigerant by effective lubrication of sliding surfaces. For rotary compressors, adaptation to HFC requires major modifications.
- The compressor uses a DC motor.

Drawing

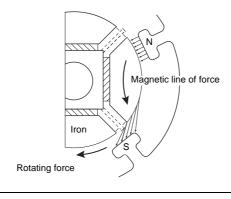
The following drawing shows the swing compressor:



1.6 Reluctance DC Motor

Rotor structure

The following drawings show the difference in structure between the conventional DC motor and the reluctance DC motor:



Principle

Magnetic lines produced by electromagnets pass through iron easily but not through air or magnet. When magnets are embedded deep into the rotor of a motor, the magnetic lines of force on the south pole of the magnet extend tangentially. The bent magnetic lines evoke a force in order to straighten. This creates a second rotating force which a conventional motor does not generate. Since this force is generated by the difference in resistance against magnetic lines, it is called a reluctance torque.

Working

The following drawing shows the working principle:

1.7 Defrost Control

Principle

Defrost control is carried out by reversing the cycle from heating to cooling.

Start conditions

Defrost control is set by the following conditions:

- during heating
- 6 minutes after the compressor has started up
- when condition 1 or 2 in the table below are applicable:

Condition	Description
1	40 minutes of accumulated runtime
	 not yet 90 minutes of accumulated runtime
	 condition 1 or 2 or 3 in the table below
2	90 minutes of accumulated runtime
	condition 1 or 4 or 5 in the table below

Conditions

The following table shows the different conditions on which defrost control is based:

Conditions	Description					
1	T _{outdoor heat exchanger} < -15 °C					
2	■ T _{ambient outdoor} < 5 °C					
	■ T _{outdoor heat exchanger} < (-5 + T _{ambient outdoor} x 0,4)					
	 check if T_{indoor heat exchanger} decreases 6 times every 10 seconds 					
3	■ T _{ambient outdoor} ≥ 5 °C					
	■ T _{outdoor heat exchanger} < -3 °C					
	 check if T_{indoor heat exchanger} decreases 6 times every 10 seconds 					
4	T _{ambient outdoor} < 5 °C for 60 seconds					
	■ T _{outdoor heat exchanger} < (-5 + T _{ambient outdoor} x 0,4) for 60 seconds					
5	■ T _{ambient outdoor} ≥ 5 °C for 60 seconds					
	■ T _{outdoor heat exchanger} < -3 °C for 60 seconds					

Stop conditions

Defrost control is reset by the following conditions:

- T_{heat exchanger} > 4 °C if T_{ambient outdoor} < 19 °C
- T_{heat exchanger} > 18 °C if T_{ambient outdoor} < -3 °C
- T_{heat exchanger} > -1 °C x (T_{ambient outdoor} + 15) if -3 °C < T_{ambient outdoor} < 19 °C.

1.8 Forced Operation Mode

Forced mode

The following table explains the different forced operation modes, forced cooling and forced heating:

Item	Forced cooling	Forced heating
	not in the 3-minute stand-by mode	not in the 3-minute stand-by mode
	 normal operation mode 	 normal operation mode
Conditions	 outdoor unit off 	 outdoor unit off
	 no malfunction in the outdoor unit 	 no malfunction in the outdoor unit
	■ forced mode: cooling mode.	■ forced mode: heating mode.
	Press the forced operation switch SW2 to start the following items:	Press the forced operation switch SW2 to start the following items:
	command frequency: 66 Hz	 command frequency: 66 Hz
Start	 expansion valve opening: depending on capacity of operating room 	 expansion valve opening: depending on capacity of operating room
Adjustment	■ timer: 60-minute	■ timer: 60-minute
	■ fan speed: H	■ fan speed: H
	 swing flap: preservation of last setting 	 swing flap: preservation of last setting
	 indoor adjustment: send forced mode to unit. 	 indoor adjustment: send forced mode to unit.
Reset	Press the forced operation switch again or after 60 minutes.	Press the forced operation switch again or after 60 minutes.

The protective functions overrule the forced mode.

1.9 Wide-angle Flaps, Diffuser, Louvres and Autoswing

Wide-angle flap The large flaps send a large volume of air downwards to the floor. The flap provides an optimum control in cooling, heating and dry mode. Diffuser The diffuser enables the air coming out of the indoor unit to reach all surfaces in cooling mode. Heating mode During heating mode, the large flap enables direct warm air straight downwards. The diffuser presses the warm air above the floor to reach the entire room. **Cooling mode** During cooling mode, the diffuser retracts into the indoor unit. This enables a distribution of cooled air throughout the entire room. Louvres The louvres, made of elastic synthetic resin, provide a wide range of airflow that guarantees a comfortable air distribution. Autoswing The following table explains the autoswing process for heating and cooling: Item Description Drawing heating The flap swings up and down as shown in the drawing alongside. cooling The flap swings up and down as shown in the drawing alongside.

1.10 Step Flow

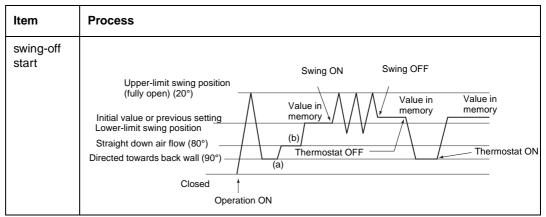
Flow

The heating process starts by sending warm air downwards. When the walls and floor are sufficiently warm, the air flow angle and volume change according to the settings.

Refer to the operation manual.

Steps

 Step
 Description
 Process


 1
 The upper flap is in straight-down position. The lower flap is fixed at 90°.
 Image: Constraint of the lower flap is fixed at 90°.

 2
 When the heat exchanger reaches 34°C or higher, the flap moves to send air straight down. Refer to (a) in the drawing below.
 Image: Constraint of the lower flap is flap moves to send air straight down. Refer to (b) in the drawing below.

 3
 When the room temperature reaches 15°C or higher, the flap moves to the set angle. Refer to (b) in the drawing below.
 Image: Constraint of the lower flap is flap moves to the set angle. Refer to (b) in the drawing below.

Example

The following example explains the difference between a swing-off start and a swing-on start for heating mode.

2

ltem	Process
swing-on start	Upper-limit swing position (fully open) (20°) Lower-limit swing position Directed towards back wall (90°) Closed

i

- The movements of the large and small flap are not linked. They move with a time delay of several seconds.
- The diffuser and flaps cover the air outlet when the unit is not operating.

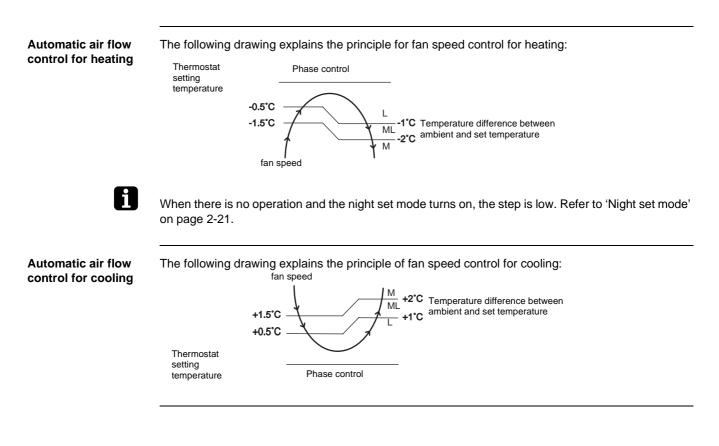
1.11 Fan Speed Control for Indoor Units

Control mode

L

The airflow rate can be automatically controlled depending on the difference between the set temperature and the room temperature. This is done through phase control and Hall IC control.

Phase steps

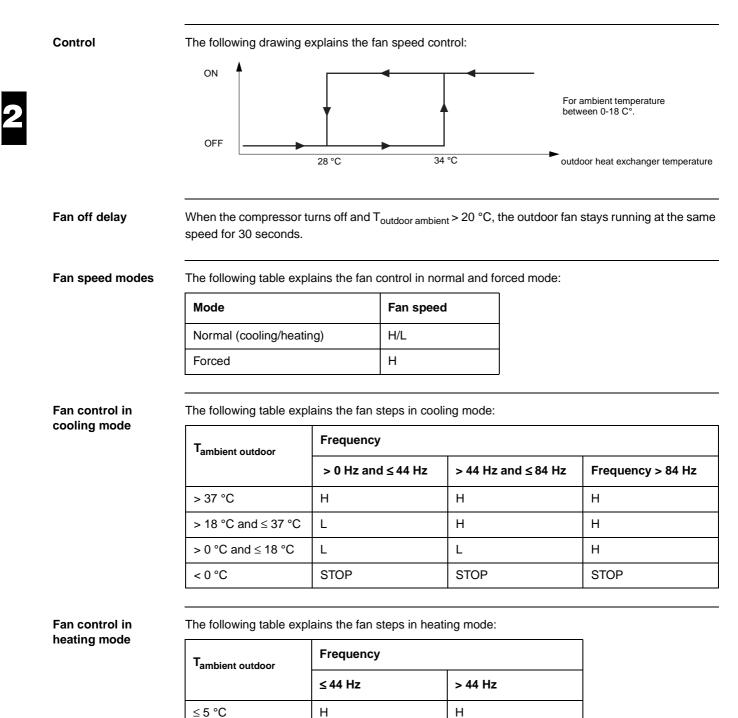

Phase control and fan speed control contains 8 steps: LLL, LL, L, ML, M, HM, H and HH.

For more information about Hall IC, refer to 'Hall IC check (A6)' on page 3-60.

Step	Cooling	Heating	Dry mode
LLL			510 - 780 rpm
LL			
L			
ML			
М			
MH			
Н			
НН			

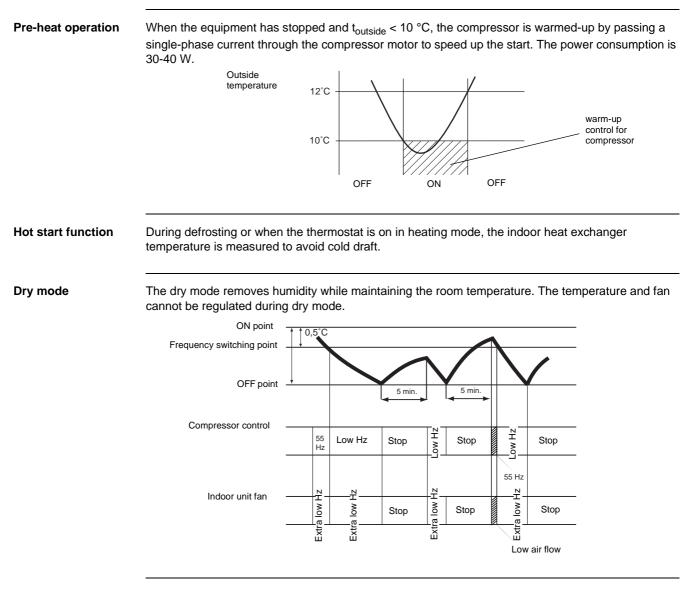
= Within this range the airflow rate is automatically controlled when the AIRFLOW ADJUSTING button is set to AUTOMATIC

= Refer to automatic airflow rate control.

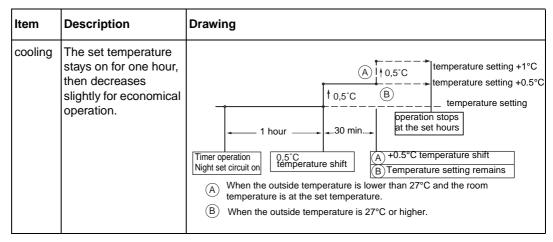


1.12 Fan Speed Control for Outdoor Units

> 5 °C


L

Н


2-20

1.13 General Functions

Night set mode

The night set mode is activated when the off timer is set. It switches the fan speed to low, to minimize the noise.

ltem	Description	Drawing
heating	The set temperature stays on for one hour, then increases slightly for economical operation.	Thermostat setting

1.14 Frequency Control

Frequency controlled functions

Function	Sensor Thermistor	Why?	How?	Set	Reset	Malfunction
High fin temperature control	switch box thermistor (R4T)	To protect the switch box against a high temperature.	By setting a high frequency limit.	T _{fin} > 82 °C	T _{fin} > 75 °C	-
Discharge temperature control	discharge temperature thermistor (R3T)	To protect the compressor.	By setting a high frequency limit.	T _{discharge pipe} > 115 °C	T _{discharge pipe} < 107 °C	T _{discharge pipe} > 124 °C UNIT STOP
Low outdoor temperature control	outdoor ambient thermistor (R1T)	To avoid condensation in cooling mode. This control is not executed when the unit is in forced cooling mode or in test mode.	By setting a high frequency limit.	T _{outdoor ambient} < 25 °C	T _{outdoor ambient} > 33 °C	-
High pressure limitation in heat- ing	 outdoor temperature thermistor (R1T) indoor heat exchanger thermistor (R2T) 	To control the pressure.	By setting a high frequency limit.	 heating mode T_{outdoor} > 16 °C T_{indoor heat exchanger} > 22 °C compressor on 	 compressor stop timer delay (70 s) has passed 	-
Freeze-up prevention	indoor heat exchanger thermistor (R2T)	To prevent the freezing up of the indoor unit in cooling mode.	By setting a high frequency limit.	 during cooling 0 °C < T_{indoor heat} exchanger < 13 °C 	T _{indoor heat exchanger} > 13 °C for 2 seconds	T _{indoor heat exchanger} < 0 °C (result: compressor stop)
Peak cut off	indoor heat exchanger thermistor (R2T)	To prevent an abnormal high temperature on the indoor heat exchanger in heating mode.	By setting a high frequency limit.	 during heating 50 °C < T_{indoor heat} exchanger < 67 °C 	T _{indoor heat exchanger} < 50 °C for 2 seconds	T _{indoor heat exchanger} > 67 °C (result: compressor stop)

Expansion Valve Control 1.15

tialization	The expansion valve is initialized when the power is switched on. The initialization contains:						
		on valve by 650 pulses (current					
	 after closure of the expansion 	sion valve, it opens again by 15	0 pulses for normal working.				
mits	The following table shows the	limits of the expansion valve of	pening:				
	Room situation	Minimum limit	Maximum limit				
	dry mode	95 pulses	450 pulses				
	cooling/ heating mode	72 pulses	450 pulses				
equence	The following flowchart shows	s a simplified view of the expans	sion valve control:				
	-			open control feedback control	rol compressor stop	pressure equalization control	
			- dia sh sa		≜		
			dischar				
			control	ge pipe temperature			
pen control	The following table shows the	functions of open control:					
pen control	The following table shows the	functions of open control: Sensor Thermistor		How?	Set	Reset	
pen control	Function Expansion valve control during high discharge pipe	Sensor	control		Set T discharge pipe > 112 °C	Reset T _{discharge pipe} < 107 °C	
control	Function Expansion valve control	Sensor Thermistor discharge pipe thermistor	Why?	How? By opening the expansion valve for 10			
sconnected	Function Expansion valve control during high discharge pipe temperature	Sensor Thermistor discharge pipe thermistor	Why? To protect the compressor.	How? By opening the expansion valve for 10			
sconnected	Function Expansion valve control during high discharge pipe temperature	Sensor Thermistor discharge pipe thermistor (R3T)	Why? To protect the compressor.	How? By opening the expansion valve for 10			
	Function Expansion valve control during high discharge pipe temperature The following table shows the	Sensor Thermistor discharge pipe thermistor (R3T) e functions of disconnected disc Sensor	Why? To protect the compressor. harge thermistor control:	How? By opening the expansion valve for 10 pulses every 30 seconds.	T _{discharge pipe} > 112 °C	T _{discharge pipe} < 107 °C	
sconnected	Function Expansion valve control during high discharge pipe temperature The following table shows the following table shows the Disconnected discharge	Sensor Thermistor discharge pipe thermistor (R3T) e functions of disconnected disc Sensor Thermistor discharge pipe	why? To protect the compressor. harge thermistor control: Why? To detect disconnection of the	How? By opening the expansion valve for 10 pulses every 30 seconds. How? By checking the difference between the	T discharge pipe > 112 °C	T _{discharge pipe} < 107 °C	

Feedback control

trol The following table shows the functions of feedback control:

Function	Sensor Thermistor	Why?	How?	Set	Reset
feedback control	 discharge pipe thermistor (R3T) outdoor heat exchanger (R1T) indoor heat exchanger thermistor (R2T) 	To calculate an optimum discharge temperature.	By checking the outdoor ambient temperature and the indoor heat exchanger temperature in order to calculate an optimum discharge temperature.	-	-
discharge temperature control	discharge pipe thermistor (R3T)	To protect the compressor.	By reducing the frequency.	 at compressor start: T_{discharge pipe} >115 °C at compressor stop: T_{discharge pipe} >124 °C 	T _{discharge pipe} < 107 °C

1.16 Other Control

Other control functions

The following table shows the other different functions, which are not frequency or expansion valve controlled:

Sensor Why? Function How? Set Reset Thermistor four-way valve To cool and defrost. By energizing the coil of the start of cooling operation compressor sto four-way valve. operation start of defrost operation start of heating forced cooling T_{fin} < 72 °C By switching off the compressor fin temperature control switch box thermistor (R4T) To protect the inverter T_{fin} > 87 °C system. and turning on the outdoor fan into (FAN STOP) H-mode. By switching the outdoor fan into T_{fin} > 78 °C switch box control switch box thermistor (R4T) To protect the inverter compressor off system. H-mode. (FAN STOP) ■ T_{fin} > 78 °C crankcase heater off

	Malfunction
ор	-
g operation	
	-
	T _{fin} > 80 °C

Part 3 Troubleshooting

Introduction	The purpose of this chapter is to explain the fault codes on the remote controller and how you can trace and correct errors.	
What is in this part?	This parts contains the following chapters:	
	Торіс	See page
	1 – Troubleshooting	page 3-3
	2 – Overview of General Problems	page 3-9
	3 – Overview of Fault Indications on Indoor Units	page 3-23
	4 – Overview of Fault Indications on Outdoor Units	page 3-35
	5 – Additional Checks and Repair for Troubleshooting	page 3-59

3

1 Troubleshooting

1.1 What Is in This Chapter

Introduction

When a problem occurs, you have to check all possible faults. This chapter gives a general idea of where to look for defects or causes.

Not all repair procedures are described. Some procedures are considered common practice.

Overview

This chapter covers the following topics:

Торіс	See page
1.2 – Overview of General Cases	page 3-4
1.3 – Safeties	page 3-6

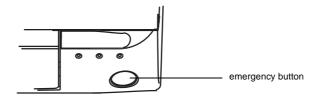
3

1.2 Overview of General Cases

No direct operation start	The operation does not start directly, when:			
	 you press the ON/OFF button after operation stop. 			
	you re-select the model	ode.		
	This is to protect the air	conditioner. You sł	nould wait for about 3 minutes.	
No direct hot air			does not flow out directly. he air conditioning is warming up to prevent cold draft.	
Sounds	The following table expl	ains the different so	orts of sounds:	
	Sounds	Explanation		
	flowing sound	Refrigerant gas	s is flowing in the air conditioner.	
	gissing sound	The refrigerant	t flow stops or changes inside the unit.	
	snapping sound	The indoor uni changes.	t shrinks or expands slightly due to temperature	
		I		
Heating operation stops suddenly	The heating operation of You should wait for abo		mitting a flowing sound, because the system is defrosting.	
Water or steam	The following table expl	ains why water or s	team can escape out of the outdoor unit:	
escapes out the outdoor unit	Case		Explanation	
	heating mode		The frost on the outdoor unit melts into water or steam when the air conditioner is in defrost operation.	
	cooling or dry mode		Moisture in the air condenses into water on the cool surface of the outdoor unit piping and starts dripping. The problem can be eliminated by insulating the service valves and piping connections.	
Mist escapes out the indoor unit	Mist can come out the in cooling operation.	door unit, when the	air in the room is cooled into mist by the cold air flow during	
Odour escapes out of the indoor unit			when smells of the room, furniture or cigarettes are the air flow. You should:	
	■ Clean oil			
	 Change filter 			
	 Check drain If the problem is not sol 	ved, contact your de	ealer.	

Outdoor fan rotates when no operation

The following table explains why the outdoor fan may rotate:


Case	Explanation
After operation stop	The outdoor fan continues rotating for another 30 seconds to cool the electronics.
While the air conditioner is not in operation	When the outdoor temperature is 49 °C, the outdoor fan starts rotating to protect the system.

Operation stops suddenly (operation lamp on) To protect the system, the air conditioner may stop operating on a sudden large voltage fluctuation. It automatically starts operation in about 3 minutes.

1.3 Safeties

Emergency button

You can use the emergency button on the front panel of the indoor unit when the remote controller is not available or its batteries have run out. Press the emergency button to start automatic mode (automatic fan speed, temperature set point of 22 °C and preservation of the last swing flap position) and press the button again to stop.

Operation lamp

The operation lamp flashes when the following errors are detected:

- When the unit is disabled because of activation of a protection device or malfunction of the thermistors. Refer to 'Overview of Fault Indications on Indoor Units' on page 3-23 and 'Overview of Fault Indications on Outdoor Units' on page 3-35.
- When a transmission error occurs between the indoor and outdoor unit.

Service check

To find the malfunction code, proceed as follows:

Step	Action	
1	Set the diagnostic mode by pressing the UP (1), DOWN (2) and MODE (3) button simultaneously. The display starts to blink.	TEMP TIME DOWN UP OFF TIMER ⊕ OFF TIMER ⊕ ON TIMER CANCEL → FAN MODE 3
2	Operate the room temperature switch by pressing the buttons UP (1) and DOWN (2) until the remote controller starts beeping (short beep).	

Step	Action	
3	Set the diagnostic mode again by pressing the MODE button (1). The display starts to blink.	TAN MODE
4	Operate the room temperature switch by pressing the UP (1) and DOWN (2) button until the remote controller starts beeping (long beep).	TIME UP OFF TIMER
5	Press the MODE button (1) again to go to test mode (30 minutes). To end test mode directly, press the ON/OFF but- ton.	TAN MODE I

Fault indication

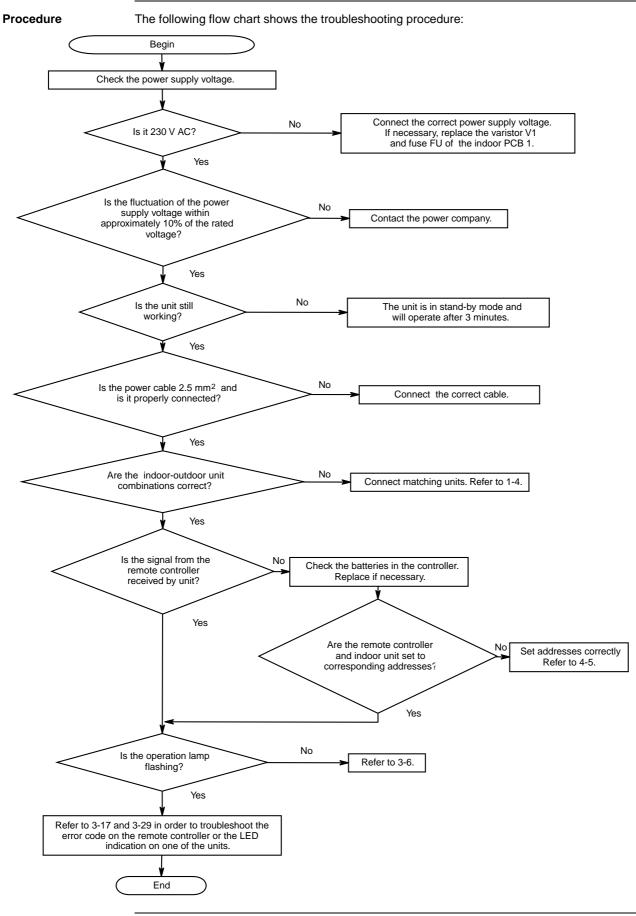
To execute a fault diagnosis, proceed as follows:

Step	Action	
1	Press the timer CANCEL button (1) for 5 seconds. The display starts to blink.	
2	Press the timer cancel button repeatedly until a continuous beep is produced.	
3	Refer to 'Overview of Fault Indications on Indoor Units' on page 3-23 and 'Overview of Fault Indications on Outdoor Units' on page 3-35 to analyse the fault. Press the timer cancel button for 5 seconds to cancel the code display. The code display also cancels itself when it is not pressed for 1 minute.	

Overview

Overview of General Problems 2

2.1 What Is in this Chapter


Introduction This chapter explains the troubleshooting sequence of problems that can occur without fault indication. This chapter covers the following topics: Topic See page... 2.2 - No Operation (Operation Lamp Off) refer to page 3-10 2.3 - Poor Cooling or Heating Effect refer to page 3-12 2.4 - Operation Stop Through Breaker refer to page 3-13 2.5 – Abnormal Operation Sound and Vibration refer to page 3-15 refer to 2.7 - Faulty Four-way Valve page 3-18

2.2 No Operation (Operation Lamp Off)

Possible causes

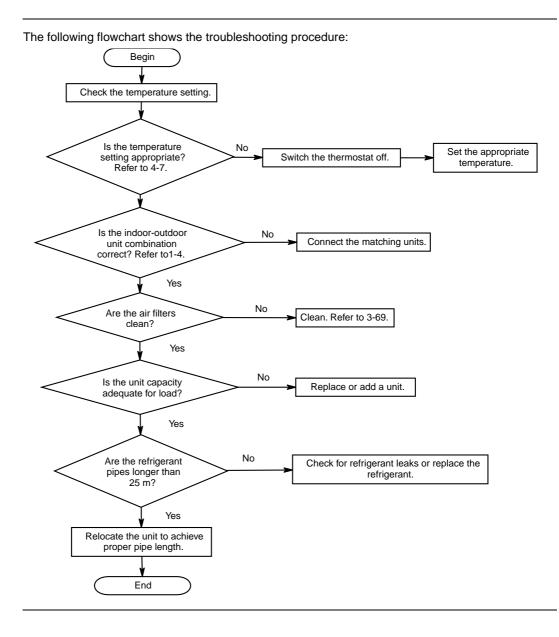
The following list shows the possible causes:

- The fuse or breaker has blown.
- The power switch is not turned on.
- Incorrect power supply voltage. Refer to 'Electrical Specifications' on page 1-7.
- Wrong connection cable.
- Incorrect indoor-outdoor unit combination. Refer to 'Technical Specifications' on page 1-4.
- Empty batteries in the remote controller.
- Incorrect address setting. Refer to 'Setting the Remote Controller' on page 4-5.
- Activation of protection device (e.g. dirty air filter, refrigerant shortage, mixing of air due to overcharge). Refer to 'Overview of Fault Indications on Indoor Units' on page 3-23 and 'Overview of Fault Indications on Outdoor Units' on page 3-35.
- The timer is not set correctly.

2.3 Poor Cooling or Heating Effect

Possible causes

The following list shows the possible causes:

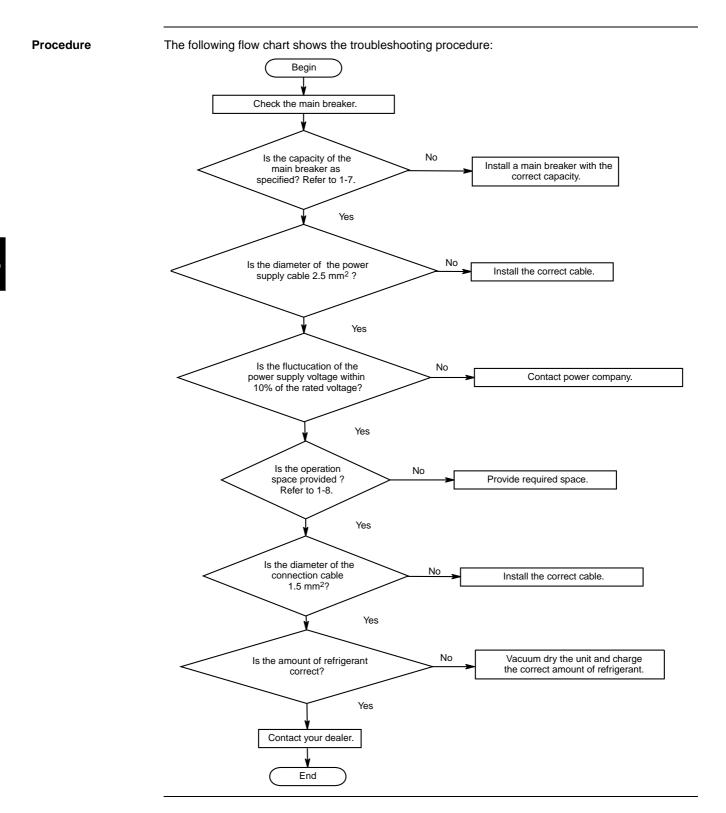

- Incorrect temperature setting. Refer to 'Test Run & Operation Data' on page 4-7.
- Incorrect indoor-outdoor unit combination. Refer to 'Technical Specifications' on page 1-4.
- Clogged air filters.
- Insufficient capacity.

Incorrect charge.

- Blockage of air inlet or outlet of the indoor and outdoor unit.
- The windows and doors are not closed. Bad ventilation.
- Verify if the air flow and air direction are set correctly. Refer to 'Outlook Drawing' on page 1-8.
- Too long refrigerant pipes. The maximum interunit piping length is 25 m.

Charge an additional refrigerant amount of 20g/m for a pipe is longer than 10 m. When the pipe is longer than 10m, cut jumper S50 refer to page 1-17.

Procedure

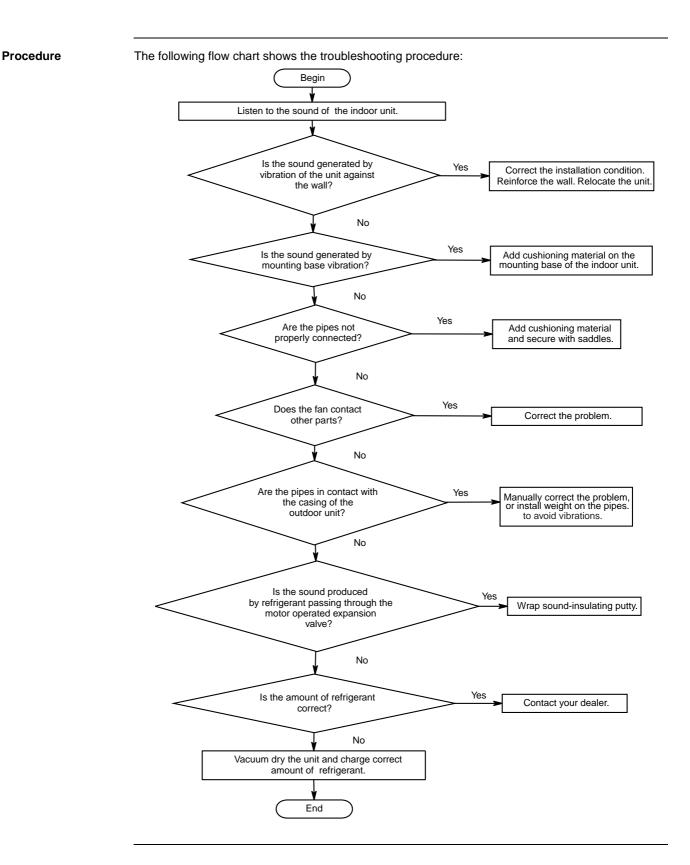


2.4 Operation Stop Through Breaker

Possible causes

The following list shows the possible causes:

- Insufficient capacity of the main breaker. Refer to 'Electrical Specifications' on page 1-7.
- Section of the power supply cable is too small.
- Supply voltage fluctuation is more than ± 10 % of the rated voltage (230 V).
- Section of the connection cable is too small (indoor unit power supply).
- Short circuit of air. Refer to 'Outlook Drawing' on page 1-8.
- Refrigerant overcharge.



2.5 Abnormal Operation Sound and Vibration

Possible causes

The following list shows the possible causes:

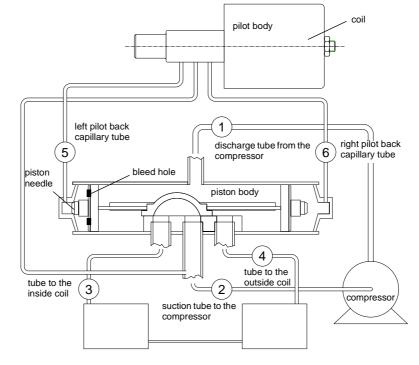
- Pipes are too short (< 2.5 m)
- Mounting wall is too thin.
- Inadequate isolation to prevent vibration.
- Product shape deformation.
- Insufficient refrigerant.
- Short circuit of air. Refer to 'Outlook Drawing' on page 1-8.

2.6 Other Problems

Operation stops suddenly (operation lamp flashes) The following list explains what the possible causes can be:

- Verify if the air filters are clean. If not, refer to page 3-69 'Cleaning the air filters'.
- Verify if there is no blockage of the air inlet and outlet of the indoor and outdoor units.
- Check if the remote controller does not indicate a fault code. Refer to 'Overview of Fault Indications on Indoor Units' on page 3-23 and 'Overview of Fault Indications on Outdoor Units' on page 3-35.

Abnormal functioning


The air conditioner may malfunction with lightning or radio waves. To check, proceed as follows:

Step	Action
1	Switch the breaker off.
2	Switch it back on.
3	Check the operation by trying to operate using the remote controller. If there is still no operation, check the remote controller. Refer to 'Overview of Fault Indications on Indoor Units' on page 3-23 and 'Overview of Fault Indications on Outdoor Units' on page 3-35.

2.7 Faulty Four-way Valve

Four-way valve

The following drawing indicates the main components necessary to execute a good troubleshooting:

Normal cooling

The following table explains the normal condition of the four-way valve in cooling mode:

Discharge	Suction	Tube to	Tube to	Left pilot back	Right pilot front
tube	tube	inside coil	outside coil	capillary tube	capillary tube
1	2	3	4	5	6
Hot	Cool	Cool as in column 2	Hot as in column 1	Temperature of valve body	Temperature of valve body

Normal heating

The following table explains the normal condition of the four-way valve in heating mode:

Discharge	Suction	Tube to	Tube to	Left pilot back	Right pilot front
tube	tube	inside coil	outside coil	capillary tube	capillary tube
1	2	3	4	5	6
Hot	Cool	Hot as in column 1	Cool as in column 2	Temperature of valve body	Temperature of valve body

The valve will not shift from cooling to heating The following list explains what the possible causes can be:

- Check the electrical circuit. If there is no voltage to the coil, repair it.
- Check the coil. If it is defective, replace it.
- Check the refrigerant charge. If the charge is low, repair it and recharge the system. If the pressure differential is too high, recheck the system.
- Check the following operation conditions to find the cause of the malfunction. The numbers in the columns refer to the numbers in the drawing on the previous page:

1	2	3	4	5	6	Description
Hot	Cool	Cool as in column	Hot as in column	Temperature of valve body	Hot	The pilot valve works correctly. There is dirt in one bleed hole. To resolve:
		2	1			1 Deenergize the solenoid.
						2 Raise the head pressure.
						3 Reenergize the solenoid to loosen the dirt.
						4 If unsuccessful, remove the valve and wash it out. Check on air before reinstalling. If there is still no movement, replace the valve, add a new strainer to the discharge tube and mount the valve horizontally.
						The piston cup head leaks. To resolve:
						1 Stop the unit.
						2 After pressure equalization, restart with energized solenoid.
						3 If the valve shifts, reattempt with the compressor on. If there is no reversal, replace the valve.
Hot	Cool	Cool as in	Hot as in	Temperature of valve	Temperature of valve	The pilot tubes are clogged. To resolve:
		column 2	column 1	body	body	1 Raise the head pressure.
		_				2 Operate the solenoid to free the dirt.
						3 If there is still no shift, replace the valve.
Hot	Cool	in	Hot as in	Hot	Hot	Both parts of pilot are still open. To resolve:
		column 2	column 1			1 Raise the head pressure.
		-				2 Operate the solenoid to free the partially clogged port.
						3 If there is still no shift, replace the valve.
Warm	Cool	Cool as in column 2	Hot as in column 1	Temperature of valve body	Warm	The compressor is defective.

The valve starts to shift but does not complete the reversal The following list explains what the possible causes can be. The numbers in the columns refer to the numbers in the drawing: refer to page 3-18:

1	2	3	4	5	6	Description
Hot	Warm	Warm Warm	Warm	Temperature of valve body	Hot	There is not enough pressure differential at start of stroke or not enough flow to maintain the pressure differential. To resolve:
						 Check the unit for correct operating pressure and charge.
						2 Raise the head pressure.
						3 If there is still no shift, replace the valve.
						There is body damage. Replace the valve.
Hot	Warm	Warm	Hot	Hot	Hot	Both parts of pilot are still open. To resolve:
						1 Raise the head pressure.
						2 Operate the solenoid to free the partially clogged port.
						3 If there is still no shift, replace the valve.
Hot	Hot	Hot	Hot	Temperature of valve	Hot	There is body damage. Replace the valve.
				body		The valve hung up at mid-stroke. The pumping volume of the compressor is not sufficient to maintain the reversal. To resolve:
						1 Raise the head pressure.
						2 Operate the solenoid.
						3 If there is still no shift, replace the valve.
Hot	Hot	Hot Hot Hot	Hot	Both parts of pilot are still open. To resolve:		
						1 Raise the head pressure.
						2 Operate the solenoid to the free partially clogged port.
						3 If there is still no shift, replace the valve.

The valve will not shift from heating to cooling The following list explains what the possible causes can be. The numbers in the columns refer to the numbers in the drawing: refer to page 3-18:

1	2	3	4	5	6	Description
Hot	Cool	Hot as in column 1	Cool as in column 1	Temperature of valve body	Temperature of valve body	 The pressure differential is too high. To resolve: 1 Raise the head pressure. The valve will reverse during pressure equalization period. 2 Recheck the system. The pilot tubes are clogged. To resolve: 1 Raise the head pressure.
						 2 Operate the solenoid to free the dirt. 3 If there is still no shift, replace the valve.
Hot	Cool	Hot as in column 1	Cool as in column 1	Hot	Temperature of valve body	 There is dirt in one bleed hole. To resolve: 1 Raise the head pressure. 2 Operate the solenoid. 3 If unsuccessful, remove the valve and wash it out. Check on air before reinstalling. If there is still no movement, replace the valve, add a new strainer to the discharge tube and mount the valve horizontally.
Hot	Cool	Hot as in column 1	Cool as in column 1	Hot	temperature of valve body	 The piston cup head leaks. To resolve: 1 Stop the unit. 2 After pressure equalization, restart with the solenoid deenergized. 3 If the valve shifts, reattempt with the compressor on. If there is no reversal, replace the valve.
Hot	Cool	Hot as in column 1	Cool as in column 1	Hot	Hot	The pilot is defective, replace the valve.
Warm	Cool	Warm as in column 1	Cool as in column 1	Warm	Temperature of valve body	The compressor is defective.

Leak when heating mode

The following list explains what the possible causes can be. The numbers in the columns refer to the numbers in the drawing: refer to page 3-18:

1	2	3	4	5	6	Description
Hot	Cool	Hot as in column 1	Cool as in column 1	Temperature of valve body	Warmer than valve body	 At the end of the slide, the piston needle is leaking. To resolve: 1 Operate the valve several times. 2 Recheck. 3 If there is an excessive leak,
Hot	Cool	Hot as in column 1	Cool as in column 1	Warmer than valve body	Warmer than valve body	 replace the valve. The piston needle and pilot needle are leaking. To resolve: 1 Operate the valve several times. 2 Recheck. 3 If there is an excessive leak, replace the valve.

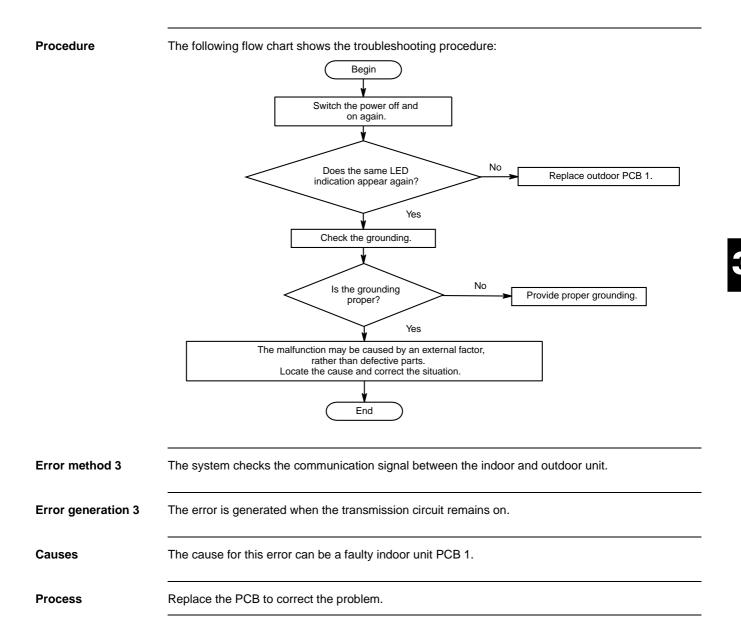
3 Overview of Fault Indications on Indoor Units

3.1 What Is in this Chapter

Introduction

In the first stage of the troubleshooting sequence it is important to interpret the fault indication on the remote controller display. This will help you to find the cause of the problem for the indoor units.

- A
- The fault indication of the indoor unit has priority on the outdoor unit.
- Some of the faults are not directly indicated on the remote controller, because they need to be generated several times. If you want to check immediately, you can check the LED indication on the indoor PCB.

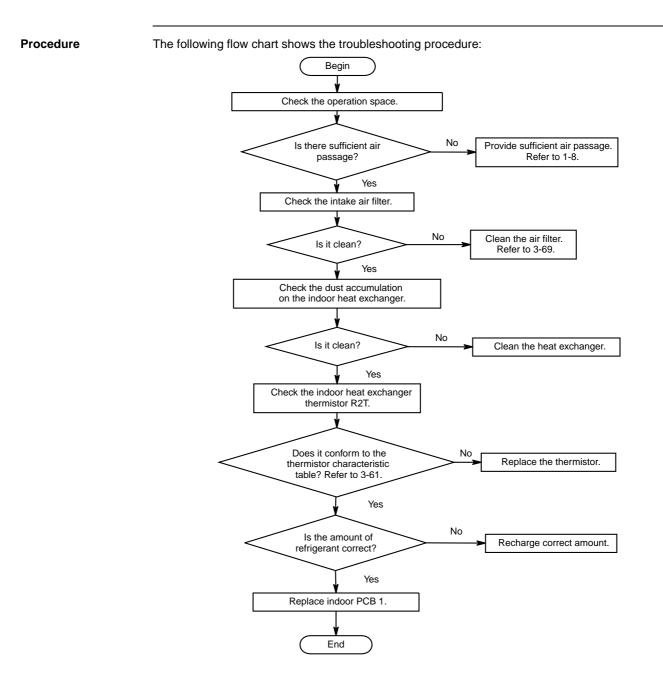

Overview

This chapter covers the following topics:

Торіс	Fault code	See page
3.2 – Faulty Indoor PCB	81 or *	3-24
3.3 – Freeze-up Prevention or High Pressure Control	85	3-26
3.4 – Fan Motor Abnormality	86	3-28
3.5 – Thermistor Abnormality	64, 69	3-30
3.6 – Faulty Power Supply or Indoor PCB	* or U4	3-31
3.7 – Signal Transmission Error	UY	3-33

3.2 Faulty Indoor PCB

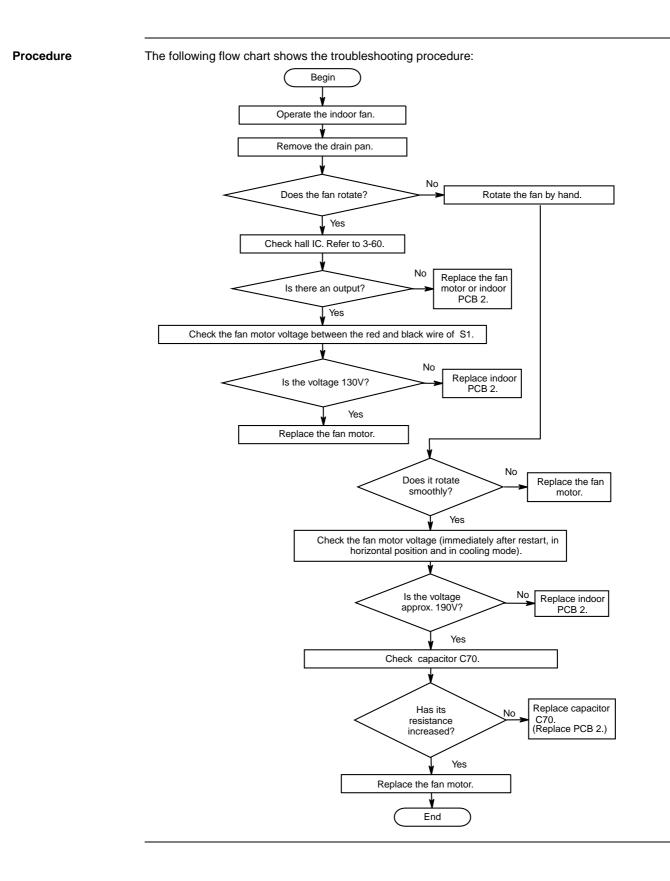
Fault code									
LED indication	The following table s	hows the LED indicat	tion of the indoor ur	it:					
	Condition LED A (green) LED B (green) Refer to								
	normal	•	•	-					
	fault 1	•	•	Error method 1 on this page.					
	fault 2	0	*	Error method 2 on this page.					
	fault 3	•	0	Error method 3 on the following page.					
Error method 1	The indoor unit evaluates the zero-cross detection of the power supply.								
Error generation 1	The error is generate	ed when there is no zo	ero-cross detection	for ± 10s.					
Causes	 The following list shows the possible causes: Faulty indoor PCB 1 or PCB 2. Faulty connector connection (S36/S37). 								
Procedure	The following flow chart shows the troubleshooting procedure: Begin Check the connection S36 and S37. Check the connected properly? Is it connected properly? Yes Replace indoor PCB 1 and/or PCB 2. End								
Error method 2	The internal program	checks the working	of the microcomput	er to detect this error.					
Error generation 2	The error is generate	ed when the microcon	nputer program doe	es not function properly.					
Causes	 The following list shows the possible causes: The microcomputer program is in abnormal condition due to an external factor like noise, momentary voltage drop, momentary power failure etc. Faulty indoor PCB 1. 								



3.3 Freeze-up Prevention or High Pressure Control

Fault code	85						
LED indication	The following table	shows the LED indicat	ion of the	indoor un	it		
	Condition	LED A (green)	LED B	(green)			
	normal	•	()	-		
	fault	•	()]		
Error	The following table	explains the 2 possibil	ities:				
	Error method				Error generation		
	During the cooling operation, freeze-up preven- tion is activated according to the temperature detected by the indoor heat exchanger thermis- tor (R2T).				During the cooling operation, the error is generated when T _{indoor heat exchanger} < 0°C.		
	control is activate	g operation, high press d according to the temp ndoor heat exchanger t	perature		he heating operation, the error is ed when T _{indoor heat exchanger} > 67°C.		
Causes	The following list shows the possible causes:						
	 Operation halt due to a clogged air filter. Refer to 'Cleaning the air filters' on page 3-69. 						
	Operation halt of	due to dust accumulation	on on the i	indoor hea	at exchanger.		
	 Operation halt due to insufficient air passage. Refer to 'Outlook Drawing' on page 1-8. 						
	 Detection error 	due to a faulty indoor h	eat excha	anger ther	mistor (R2T).		
	 Detection error 	due to a faulty indoor u	init PCB 1				
	Incorrect refrigerant charge.						

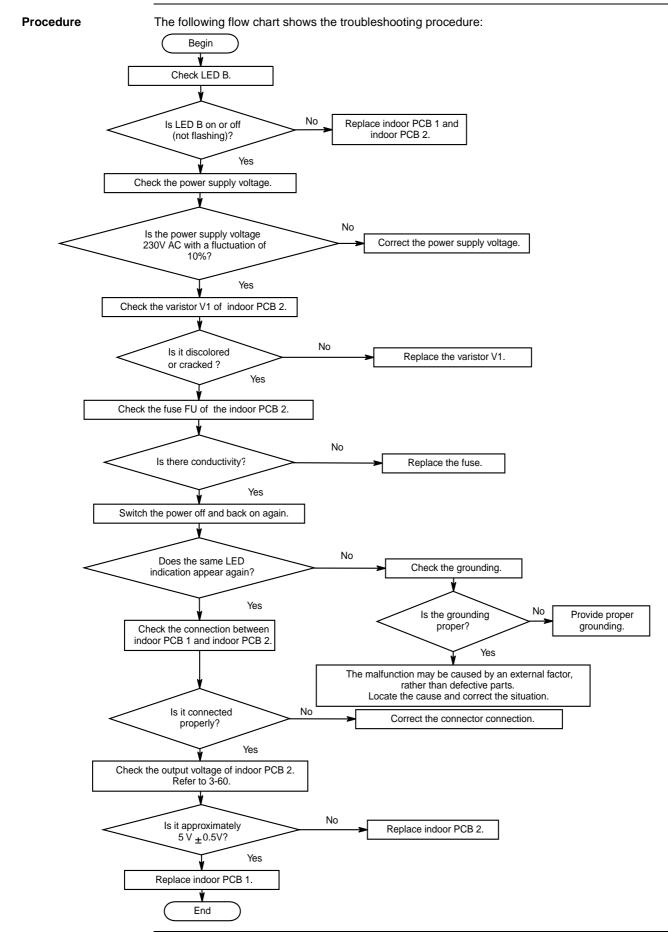
3


3–26

3.4 Fan Motor Abnormality

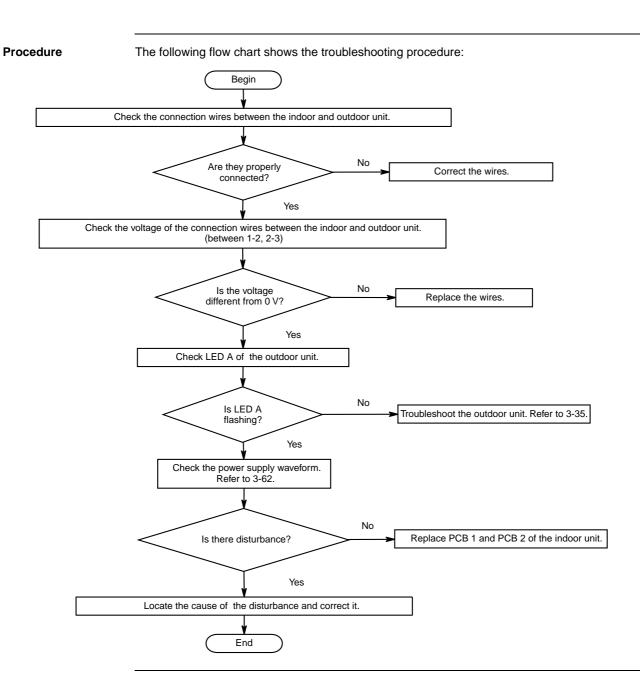
Fault code	86							
LED indication	The following table	The following table shows the LED indication of the indoor unit:						
	Condition	LED A (green)	LED B (green)	7				
	normal	0	•	-				
	fault	0	0					
Error method Error generation	operation.	fan motor speed, the err	· · · · · · · · · · · · · · · · · · ·	d to determine abnormal fan motor				
Causes	The following list s	shows the possible caus	es:					
	 Operation halt 	due to short circuit insid	le the fan motor wi	nding.				
	 Operation halt 	due to a broken wire ins	side the fan motor.					
	 Operation halt 	due to broken fan moto	r lead wires.					
	 Operation halt 	due to faulty capacitor (C70 of the fan mote	or.				
	 Detection error 	r due to faulty indoor un	it PCB 1.					
	 Detection error 	r due to faulty indoor un	it PCB 2.					

Part 3 – Troubleshooting


3.5 Thermistor Abnormality

Fault code	۲4, С9						
LED indication	The following table shows the LED indication of the indoor unit:						
	Condition	LED A (green)	LED B (green	1)			
	normal	•	•				
	fault	0	0				
Error method	The relation between thermistors is used to			ermistors and the resis	stance of the		
Error generation	During compressor of less than 0.04 V.	peration, the error is	generated when	the thermistor input is	more than 4.96 V or		
Causes	The following list sho	ws the possible caus	es:				
	 Faulty connector connection. 						
	Faulty thermistor.						
	Faulty PCB.						
Procedure	C9: Indoor ambient	changer thermistor (F temperature thermistor (F Begin Check the connector c Is it connected properly? Check the thermistor m Refer to 3-61.	R2T). stor (R1T). onnection. d Ves esistance. No Yes	Correct the connection.			

3.6 Faulty Power Supply or Indoor PCB


Fault code	א or טץ א or אי						
LED indication	The following table	e shows the LED indicat	tion of the ind	door unit:			
	Condition	LED A (green)	LED B (g	reen)			
	normal O O						
	fault	•	*				
Error	The following table	e explains the 2 possibil	ities:				
	Error method			Error generation			
					is generated when the outer program does not function		
		During indoor-outdoor communication, the indoor unit detects the signals coming from the outdoor unit. During indoor-outdoor communication, the error is generated when the indoor unit receives a faulty signal from the outdoor unit.					
Causes	The following list s	hows the possible caus	es:				
	 Display disable 	ed by faulty power suppl	ly.				
	 Faulty signal tr 	ansmitting/receiving cire	cuit in indoor	PCB 1 a	nd PCB 2.		
		puter program is in abno tage drop, momentary p			an external factor such as noise,		

■ Faulty indoor PCB 1 and PCB 2.

3.7 Signal Transmission Error

Fault code	UY			
LED indication	The following table	e shows the LED indicat	tion of the indoor ur	nit:
	Condition	LED A (green)	LED B (green)]
	normal	0	0	-
	fault	0]
Error method	The data received detect transmissio		rough the indoor-o	utdoor signal transmission is checked to
Error generation	The error is gener content of the data		n the outdoor unit c	annot be received normally or when the
Causes	The following list s	shows the possible caus	es:	
	 Faulty indoor F 	PCB 1.		
	 Faulty outdoor 	PCB 1.		
	Indoor-outdoor	r signal transmission err	or due to a wiring e	rror.
		r signal transmission err waveform check' on pag		ed power supply waveform. Refer to
	 Indoor-outdoor the outdoor un 	•	or due to a broken o	connection wire between the indoor and

4 Overview of Fault Indications on Outdoor Units

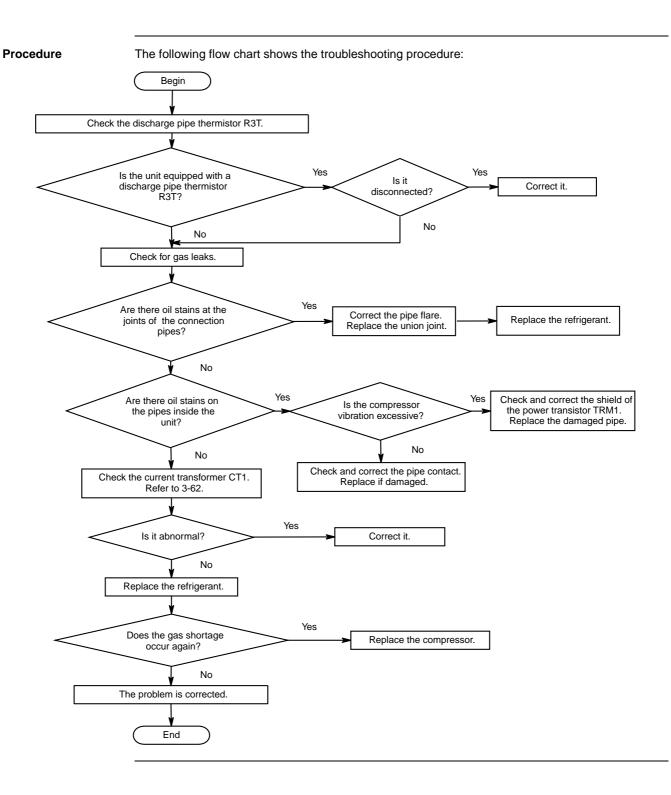
4.1 What Is in this Chapter

f

Introduction

In the first stage of the troubleshooting sequence, it is important to interpret the fault indication on the remote controller display. This will help you to find the cause of the problem for the outdoor units.

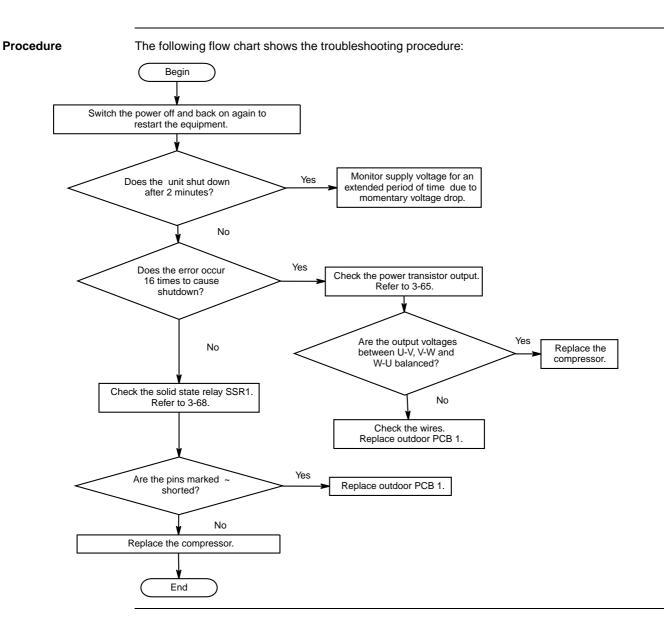
- The fault indication of the indoor unit has priority. Refer to 'Overview of Fault Indications on Indoor Units' on page 3-23.
- Some of the faults are not directly indicated on the remote controller, because they need to be generated several times. If you want to check immediately, you can check the LED indication on the indoor PCB.


Overview

This chapter covers the following topics:

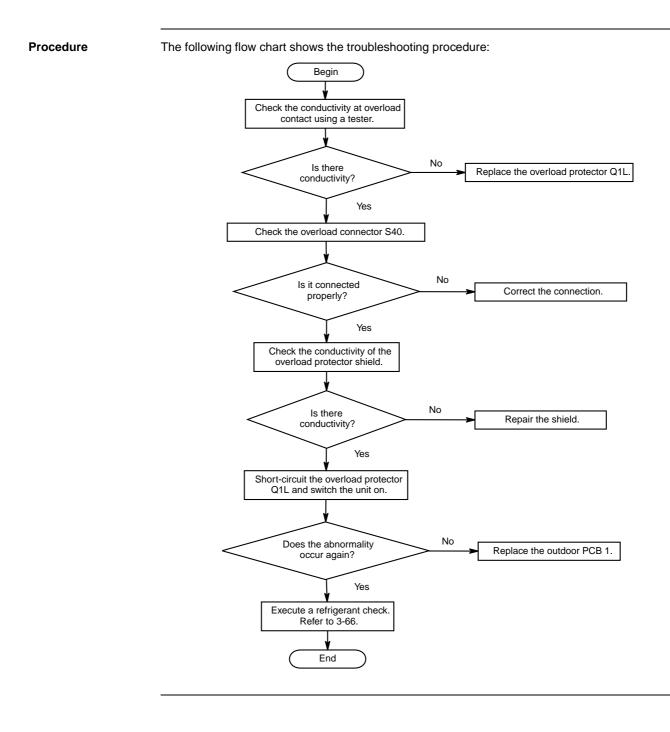
Торіс	Fault code	Shutdown after	See page
4.2 – Insufficient Gas Detection	UO	4 times	page 3-36
4.3 – Low Voltage or Main Circuit Overvoltage	U2	16 times	page 3-38
4.4 – Overload Activation	85	2 times	page 3-40
4.5 – Discharge Pipe Temperature Abnormality	F3	4 times	page 3-42
4.6 – Compressor Start-up Error	86	16 times	page 3-43
4.7 – Radiation Fin Temperature Rise	L٩	4 times	page 3-45
4.8 – Current Transformer Error	H8	4 times	page 3-47
4.9 – Output Current Error	LS	16 times	page 3-49
4.10 – Input Overcurrent Error	-	1 time	page 3-51
4.11 – Electrical Box Temperature Rise	-	1 time	page 3-53
4.12 – Faulty Outdoor PCB	*	1 time	page 3-55
4.13 – Thermistor Abnormality	P4,J3,J6,H9	4 times	page 3-56
4.14 – Faulty Outdoor PCB and Transmitting-receiving Circuit	*	1 time	page 3-57

4.2 Insufficient Gas Detection


Fault code	UO						
LED indication	The following tab	le shows the LED ir	dication of the c	outdoor unit:			
	Condition	LED A (green)	LED 1 (red)	LED 2 (red)	LED 3 (red)	LED 4 (red)	
	normal	•					
	fault	0			0	0	
Error method	The input current shortage.	checked by the curr	ent transformer a	and the frequend	cy control are us	ed to detect gas	
Error generation	The error is generated during a check of the input current, when:						
	I _{input} < [12/256 (A/Hz) x $f_{operating}$ -1.75] when $f_{operating}$ > 74 Hz for a period of 14 seconds.						
_	The system shuts down when the error is confirmed 4 times.						
£	The timer automatically resets when one of the following errors does not occur within a period of 60 minutes of accumulated runtime after the first error generation:						
	 overload activ 	vation E5					
	■ radiation fin temperature rise L4						
	 gas shortage 	detection UD					
	compressor s	start-up error E6					
	■ current transformer error H8						
	thermistor ab	normality J∃.					
Causes	The following list	shows the possible	causes:				
	 gas shortage 	due to refrigerant le	aks.				
	Input current	decrease due to ina	dequate compre	ession of the cor	npressor.		

4.3 Low Voltage or Main Circuit Overvoltage

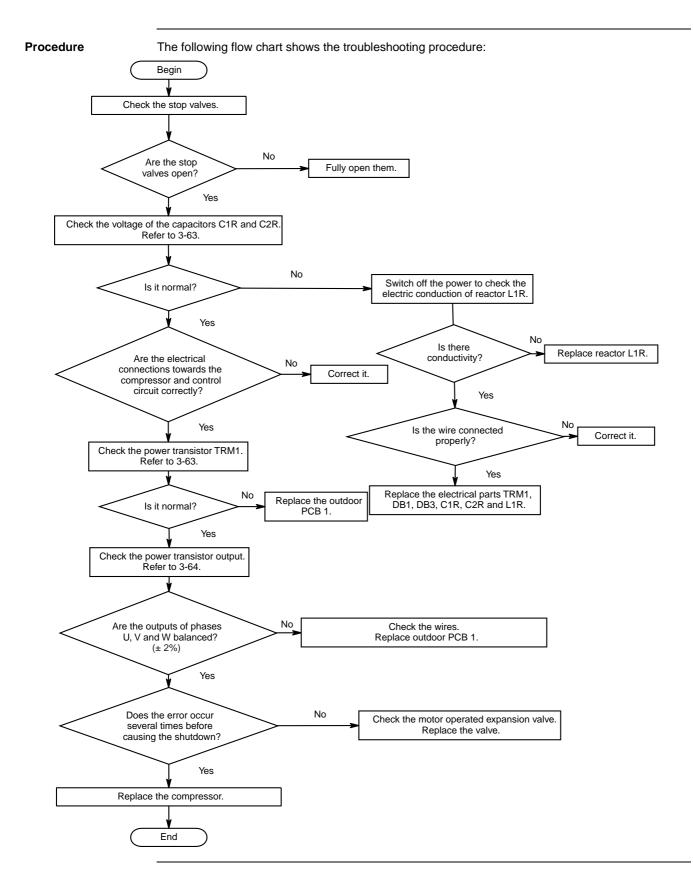
Fault code	U2					
LED indication	The following ta	ble shows the LED ir	ndication of the c	outdoor unit:		
	Condition	LED A (green)	LED 1 (red)	LED 2 (red)	LED 3 (red)	LED 4 (red)
	normal	0	•	•	•	
	fault	•	0	•	•	0
Error generation	The system shu	ervoltage detection ci	or is confirmed		Illy for 8 seconds	S.
Causes	The following lis	t shows the possible	causes:			
	Momentary	voltage drop.				
	No power su	pply due to faulty ma	ain circuit relay.			
	 Faulty power 	r supply on outdoor F	PCB 1.			
	 Broken circu 	it pattern on outdoor	PCB 1.			
	 Malfunction 	of capacitors C1R ar	d C2R.			


- Faulty compressor.
- Malfunction of the solid state relay SSR1 on outdoor PCB 1. Refer to 'SSR1 check' on page 3-68.

4.4 Overload Activation

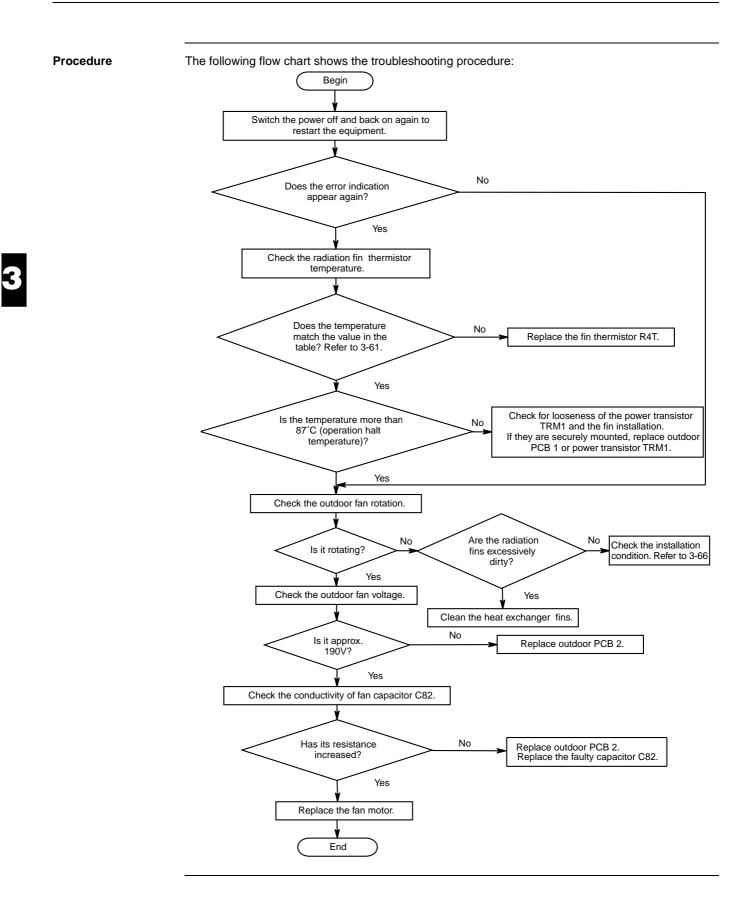
Fault code	85							
LED indication	The following ta	ble shows the LED ir	ndication of the c	outdoor unit:				
	Condition	LED A (green)	LED 1 (red)	LED 2 (red)	LED 3 (red)	LED 4 (red)		
	normal	0	•	•	•	•		
	fault	•	0	•	0	•		
Error method	Internal protection the compressor.	on of the compresso	is detected usir	ng the open cond	dition of the inter	nal protector of		
Error generation		erated when the inter puter. The contact o						
	The system shuts down when the activation of the internal protector is detected 2 times.							
8	The timer automatically resets when one of the following errors does not occur within a period of 60 minutes of accumulated runtime after the first error generation:							
	the radiation	fin temperature rise	۔ دبر					
	 gas shortage 	■ gas shortage detection UD						
	 compressor 	start-up error E6.						
Causes	The following lis	t shows the possible	causes:					
	 Overload act 	tivation due to insuffi	cient refrigerant.					
	 Error detection 	on due to a faulty ov	erload contact.					
	 Overload act 	tivation due to a fault	y 4-way valve. F	Refer to 'Faulty F	our-way Valve'	on page 3-18.		
	 Error detection 	on due to a faulty co	nnector S40.					
	Detection error due to a broken wire in the internal protector Q1L shield.							
	 Detection er 	ror due to faulty outd	oor PCB 1.					

Part 3 – Troubleshooting

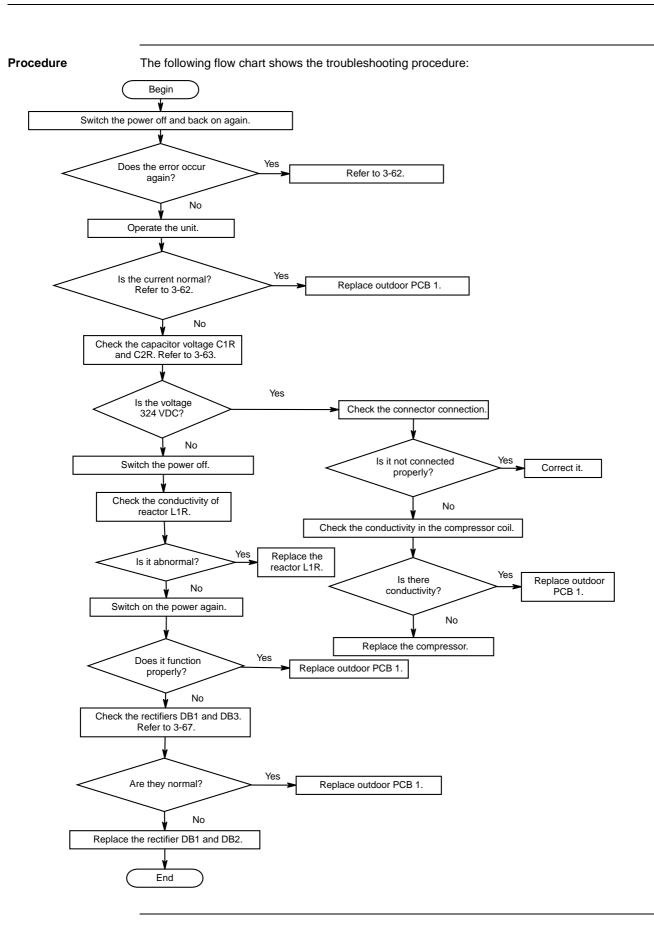

4.5 Discharge Pipe Temperature Abnormality

Fault code	F3					
LED indication	The following tab	le shows the LED ir	ndication of the c	outdoor unit:		
	Condition	LED A (green)	LED 1 (red)	LED 2 (red)	LED 3 (red)	LED 4 (red)
	normal	0	•	•	●	
	fault	0	0	•	0	•
Error method Error generation	The error is gene The system shuts The timer automa	cted through the disc rated when the disc s down when the err atically resets when ime after the first er	harge pipe therr or is generated	nistor is disconn 4 times.		0 minutes of
Causes	The cause can be	e a disconnected dis	scharge thermist	tor R3T.		
Procedure	The following flow	v chart shows the tr	oubleshooting p	rocedure:		

4.6 Compressor Start-up Error


Fault code	E6					
LED indication	The following ta	ble shows the LED ir	ndication of the c	outdoor unit:		
	Condition	LED A (green)	LED 1 (red)	LED 2 (red)	LED 3 (red)	LED 4 (red)
	normal	•	•			
	fault	•		0	0	
Error method Error generation	compressor	rt-up errors are deter erated when the com				
Causes	The following lis	t shows the possible	causes:			
	 Start-up error 	r due to a disconnec	ted junction cab	le of the compre	ssor.	
	 Start-up error 	r due to faulty comp	ressor.			
	 Start-up error 	r due to faulty outdo	or PCB 1.			
	 Start-up error 	r due to closed stop	valve.			
	 Start-up error 	r due to faulty motor	operated expan	sion valve.		

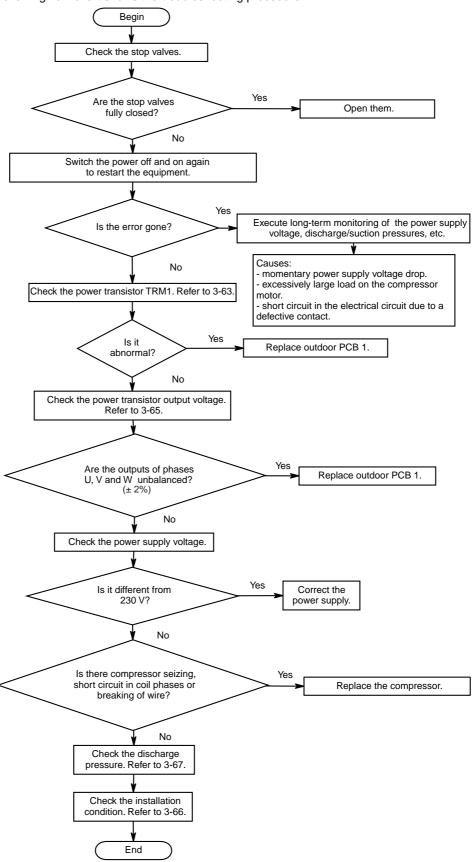
ſ


4.7 Radiation Fin Temperature Rise

Fault code	24									
LED indication	The following ta	The following table shows the LED indication of the outdoor unit:								
	Condition	LED A (green)	LED 1 (red)	LED 2 (red)	LED 3 (red)	LED 4 (red)				
	normal O O O									
	fault	0	•	•	•	0				
Error method		sor operation, the ra itch box thermistor R		rature rise is de	tected using the	temperature of				
Error generation	During compres	During compressor operation, the error is generated when $T_{radiation fin} > 87 ^{\circ}C$.								
	The system shuts down when the error is detected 4 times.									
i		The timer automatically resets when one of the following errors does not occur within a period of 60 minutes of accumulated runtime after the first error generation:								
	the radiation	■ the radiation fin temperature rise L								
	■ gas shortage detection U0									
	 compressor 	start-up error E6.								
Causes	The following lis	The following list shows the possible causes:								
	Fin temperat	ture rise due to faulty	outdoor fan.							
	Fin temperat	ture rise due to short	circuit.							
	 Detection du 	e to faulty radiation	switch box therm	nistor (R4T).						
	 Detection er 	ror due to faulty conr	nector connection	n.						
	 Detection er 	ror due to faulty outd	oor PCB 1 or PC	CB 2						

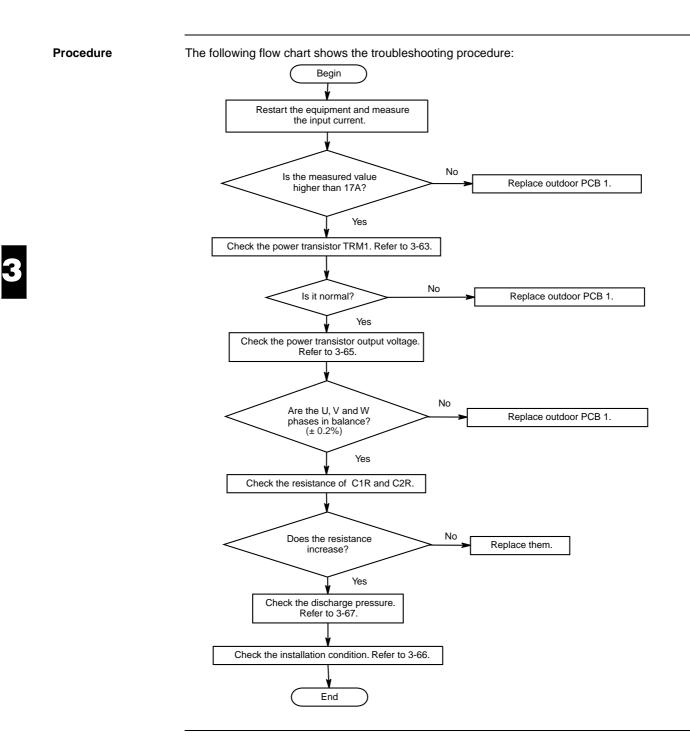
4.8 Current Transformer Error

Fault code	H8							
LED indication	The following table shows the LED indication of the outdoor unit:							
	Condition	LED A (green)	LED 1 (red)	LED 2 (red)	LED 3 (red)	LED 4 (red)		
	normal	0	•	•				
	fault	0	0	0				
Error method Error generation	current of CT1. The error is gen current transforr	mer errors are detect erated when the ope ner input is less than ts down when the cu	rating frequency	of the compres	sor is more than			
Causes	 Faulty powe 							



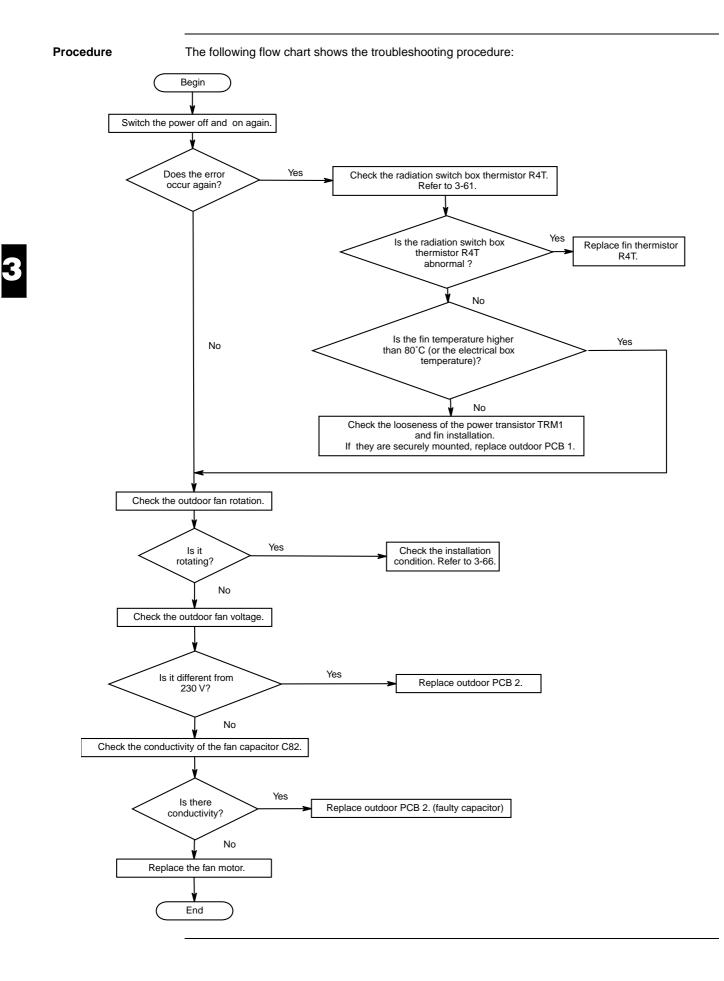
4.9 Output Current Error

Fault code	15									
LED indication	The following tak	The following table shows the LED indication of the indoor unit:								
	Condition	LED A (green)	LED 1 (red)	LED 2 (red)	LED 3 (red)	LED 4 (red)				
	normal	•	•	•	•	•				
	fault	0	•	0	0	0				
Error method	The output over	current is detected b	y the current flow	wing in the curre	nt transformer C	CT1.				
Error generation	-	The error is generated when the output overcurrent detection circuit sends an output overcurrent signal to the microcomputer.								
_	The system shut	The system shuts down when the error is confirmed 16 times.								
i		The timer automatically resets when the compressor operates for 8 minutes without low voltage, fan lock or output overcurrent.								
Causes	The following list	shows the possible	causes:							
	 Overcurrent d 	due to a faulty powe	r transistor TRM	1.						
	 Overcurrent of 	 Overcurrent due to a faulty internal wiring. 								
	 Overcurrent of 	due to a faulty powe	r supply voltage.							
	Overcurrent of the second s	due to a faulty outdo	or PCB 1.							
	 Overcurrent of 	due to a closed stop	valve.							
	 Overcurrent of 	due to a faulty comp	ressor.							


Procedure

The following flow chart shows the troubleshooting procedure:

4.10 Input Overcurrent Error


Fault code	-								
LED indication	The following ta	The following table shows the LED indication of the indoor unit:							
	Condition	LED A (green)	LED 1 (red)	LED 2 (red)	LED 3 (red)	LED 4 (red)			
	normal	0	•						
	fault	0	•	0	●	0			
Error generation	Current transform During compres 2.5 seconds.	mer CT1.	ror is generated	when the input o	current remains	above 17 A for			
Causes	The following lis	st shows the possible	causes:						
	 Overcurrent due to faulty compressor. 								
	 Overcurrent 	due to faulty compre	ssor.						
		due to faulty compre due to faulty power t							
	 Overcurrent 	, i	ransistor TRM1.		inverter circuit.				
	OvercurrentOvercurrent	due to faulty power t	ransistor TRM1. ytic capacitor C1		inverter circuit.				

4.11 Electrical Box Temperature Rise

Fault code	-						
LED indication	The following table shows the LED indication of the indoor unit:						
	Condition	LED A (green)	LED 1 (red)	LED 2 (red)	LED 3 (red)	LED 4 (red)	
	normal	0	•	•	•		
	fault	0	0	0		0	
Error method Error generation	During compressor operation, the electrical box temperature rise is detected by the radiation switch box thermistor R4T. During compressor's non-operating period, the error is generated when the radiation switch box thermistor temperature reaches 80 °C.						
Causes	The following lis	t shows the possible	causes:				
	 Electrical bo 	x temperature rise d	ue to outdoor far	n malfunctioning.			
	 Electrical bo 	x temperature rise d	ue to short circui	t.			
	 Detection er 	ror due to faulty radia	ation switch box	thermistor (R4T)).		
	 Detection er 	ror due to faulty conr	nector connection	n.			
	Detection error due to faulty outdoor PCB 1.						

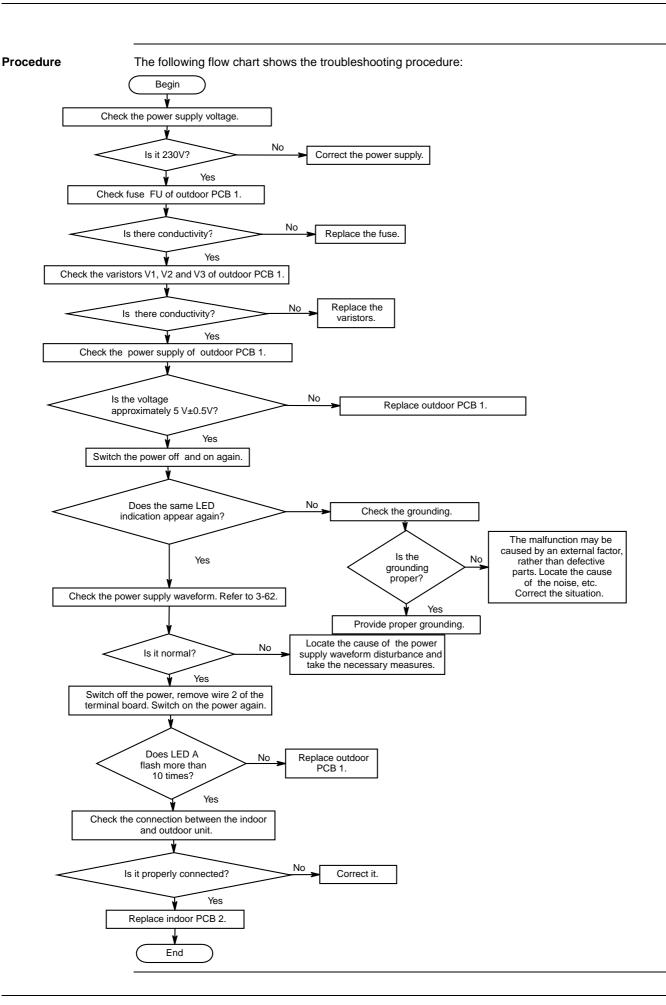
3

4.12 Faulty Outdoor PCB

Fault code	*								
LED indication	The following table shows the LED indication of the indoor unit:								
	Condition	LED A (green)	LED 1 (red)	LED 2 (red)	LED 3 (red)	LED 4 (red)			
	normal	•	•	•	•	•			
	fault	0	-	-	-	-			
Error method	The internal pro	gram checks the wo	king of the micro	ocomputer to de	tect this error.				
Error generation	The error is generated when the microcomputer program does not function properly.								
Causes	The following lis	The following list shows the possible causes:							
	The microcomputer program is in abnormal condition due to an external factor like noise,								
	momentary voltage drop, momentary power failure etc.								
	Faulty outdoor PCB 1.								
Procedure	The following flow chart shows the troubleshooting procedure:								
		Begin							
		Switch the power on again.							
				NI-		_			
	Is the LED indication off? No Replace outdoor PCB 1.								
		Yes							
	Check the grounding.								
	Is the No Provide proper grounding								
		grounding properly? Provide proper grounding.							
		Yes							
	Then malfu	nction may be caused by	an external factor.	1					
		rather than defective pa e the cause and correct th	arts.						
	L	↓							
		End							

3

4.13 Thermistor Abnormality


Fault code	P4,J3,J6,X9						
LED indication	The following table shows the LED indication of the indoor unit:						
	Condition	LED A (green)	LED 1 (red)	LED 2 (red)	LED 3 (red)	LED 4 (red)	
	normal	0	•			•	
	fault	0	0	0		•	
Error method	The temperature	es detected by the th	ermistors are us	ed to determine	this error.		
Error generation	The error is gen	erated when the ther	mistor input is m	nore than 4.96 V	or less than 0.0)4 V.	
Causes	 The following list shows the possible causes: Faulty connector connection. Faulty thermistor. Faulty outdoor PCB 1. 						
Procedure	면': Radiation J∃: Discharge J5: Outdoor h	by chart shows the tr switch box thermistor (R pipe thermistor (R3T) eat exchanger thermistor mbient thermistor (R1T) Begin Check the connector co Is it connected properly?	R4T) pr (R2T)) pnnection.	0	rect the connection.		
	Che	Replace the outdoor End	Yes		the thermistor.		

Fault code * LED indication The following table shows the LED indication of the indoor unit: LED 3 (red) Condition LED A (green) LED 1 (red) LED 2 (red) LED 4 (red) 0 normal 0 0 fault Error The following table explains the 2 possibilities: Error method **Error generation** The internal program checks the operation of The error is generated when the the microcomputer to detect this error. microcomputer program does not function properly. The data received from the outdoor unit through The error is generated when the data transthe indoor-outdoor signal transmission is mitted by the outdoor unit cannot be received checked by the indoor unit to detect this error. properly by the indoor unit. Causes The following list shows the possible causes: Display disabled by faulty power supply. Faulty signal transmitting-receiving circuit of outdoor PCB 1. Microcomputer program is in abnormal condition due to an external factor like noise, momentary

4.14 Faulty Outdoor PCB and Transmitting-receiving Circuit

■ Faulty outdoor PCB 1.

voltage drop, momentary power failure, etc.

5 Additional Checks and Repair for Troubleshooting

Introduction	This chapter explains how you have to check the units to execute good troubleshooting.					
Overview	This chapter covers the following topics:					
	Торіс	See page				
	5.2 – Checking the Indoor Units	page 3-60				
	5.3 – Checking the Outdoor Units	page 3-62				
	5.4 – Repair for Indoor Units	page 3-69				
	5.5 – Repair for Outdoor Units	page 3-82				

5.1 What Is in This Chapter

5.2 Checking the Indoor Units

Hall IC check (85)

Check the Hall IC when fault code 85 appears on the display.

To check the Hall IC, proceed as follows:

Step	Action							
1	Make sure that connector indoor S7 on indoor PCB 1 is properly connected.							
	1 Gray (power supply)							
	2 O Purple (signals)							
	3 Blue (grounding)							
2	Make sure that the power is on and that there is no operation.							
3	Measure the voltage between pin 1 and 3 of S7.							
4	Rotate the fan one turn by hand and measure the generated pulses between pin 2 and 3 of S7.							
5	Execute the check by making a comparison:							
	If then							
	the measured voltage between pin 1 and 3 does replace indoor PCB 1. not equal 5 V							
	the generated pulses do not equal 3 pulses replace the fan motor.							
	the measured voltage does not equal 5 V and the generated pulses do not equal 3 pulsesreplace indoor PCB 1.							

Indoor PCB 2 output voltage check (닌닉)

Check the indoor PCB2 output voltage when fault code UH appears on the display.

To check the output voltage of indoor PCB 2, proceed as follows:

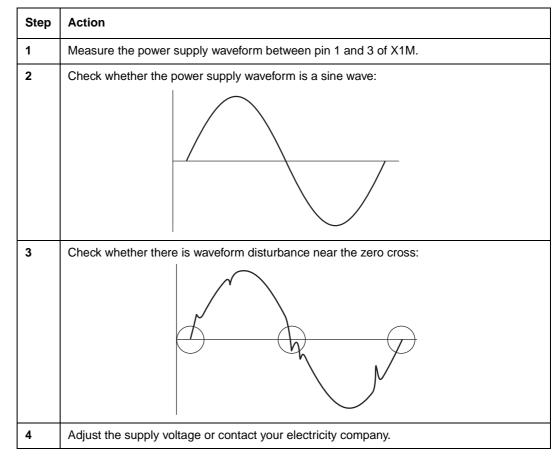
Step	Action							
1	Make sure that connector S36 on indoor PCB 2 is properly connected.							
2	Measure the voltage between pin 4 and 6 and between pin 4 and 7.							
	7 6 7 6 7 6 7 7 6 7 7 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7							
	If not, replace indoor PCB 2.							

Thermistor

resistance check (РЧ, JЗ, J6, Н9) Check the thermistor resistance when fault code P4, J3, J6, or H9 appears on the display.

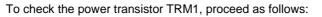
To check the resistance of the thermistors, proceed as follows:

Step	Action		
1	Remove the conn	ectors of the thermistor	s on the PCBs.
		formation about these s Thermistors' on page 2	ensors, refer to 'Wiring Diagrams' on page -4.
2	Read the tempera	ature.	
3	Measure the resis	stance.	
4			Tester ond with the values in the table below.
+	Temperature	Resistor value	
	°C	kΩ	_
	-20	211	-
	-15	150	1
	-10	116.5	-
	10		
	-5	88	
		88 67.2	-
	-5		-
	-5 0	67.2	
	-5 0 5	67.2 51.9	
	-5 0 5 10	67.2 51.9 40	
	-5 0 5 10 15	67.2 51.9 40 31.8	
	-5 0 5 10 15 20	67.2 51.9 40 31.8 25	
	-5 0 5 10 15 20 25	67.2 51.9 40 31.8 25 20	
	-5 0 5 10 15 20 25 30	67.2 51.9 40 31.8 25 20 16	
	-5 0 5 10 15 20 25 30 35	67.2 51.9 40 31.8 25 20 16 13	


Time

5.3 Checking the Outdoor Units

Current transformer check Current 25A 5A Check the current of the current transformer CT1 with the oscilloscope. The capacitor will be discharged when MRM1 is ON.


Power supply waveform check The following table explains how to check the power supply waveform:

^{≯|} 2 min.

Power transistor check

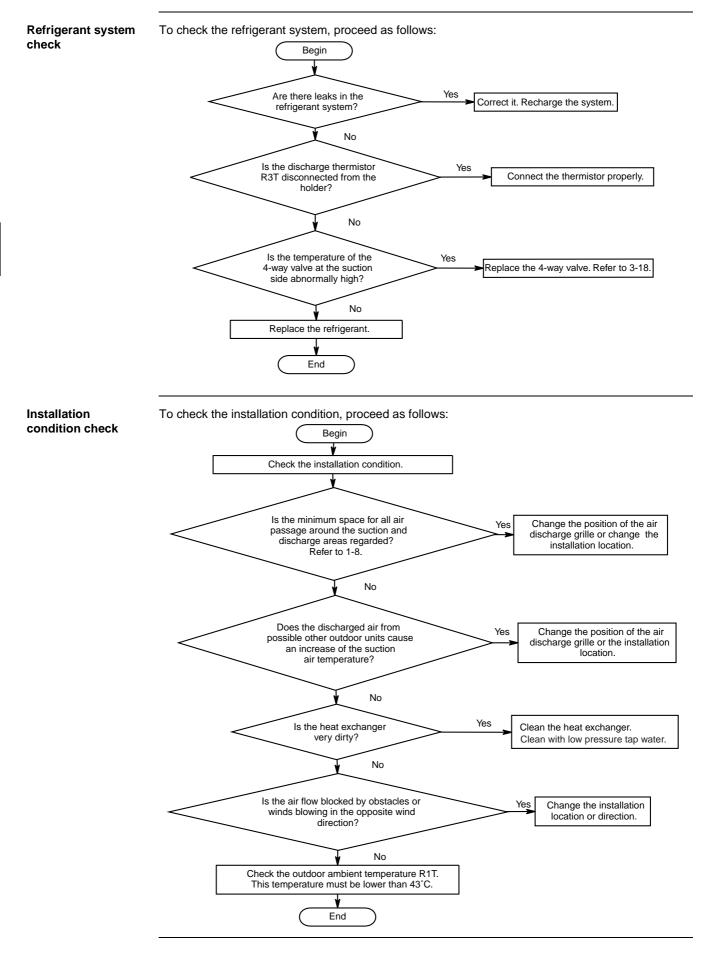
44

Before checking, make sure that the voltage between (+) and (-) of the power transistor is approximately 0 V.

Step	Action							
1	Disconnect S30 from outdoor PCB 1.							
2	Execute the following check with a tester:							
	Negative (-) terminal of analog tester Positive (+) terminal of analog tester Normal Unacceptable							
	Positive terminal (+) of digital tester	Negative terminal (-) of digital tester	resistance range	resistance range				
	power transistor (+) side	U-V-W	$k\Omega$ to $M\Omega$	short (0 Ω) or				
	U-V-W		open					
	power transistor (-) side U-V-W							
	U-V-W	power transistor (+) side						

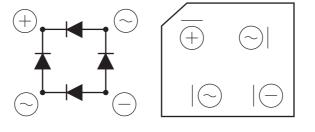
Capacitor voltage check

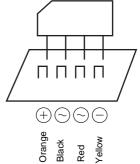
To check the voltages of the capacitors C1R and C2R, proceed as follows:


Step	Action
1	Operate the unit for several minutes.
2	Shut down using the main circuit breaker.
	When you shut down the unit using the remote controller, the capacitors discharge. This causes inaccurate measurement.
3	Measure between (+) and (-) of the power transistor TRM1 using a multi-tester (DC-mode).
	The voltage of the capacitors is measured between (+) and (-) of the power transistor TRM1, while the (+) and (-) of the capacitors are connected to the (+) and (-) of the transistor.
4	If the voltage is 130 V \pm 30VDC, then the capacitors work properly.

C

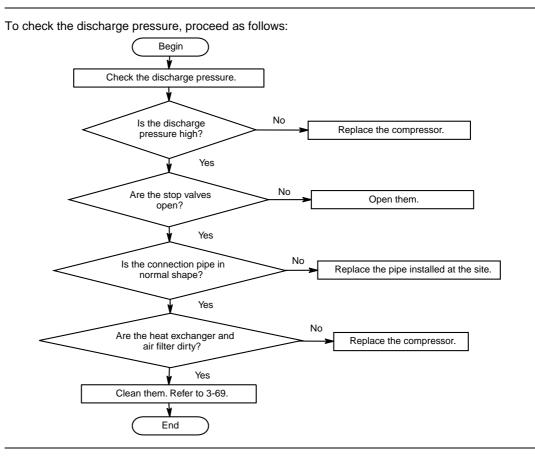
Power transistor output current check To check the output current of the power transistor, proceed as follows:


Step	Action						
1	Remove the panels.	Remove the panels.					
2	Snap a clamp meter around the red (U), yellow (V) or sor to measure the current.	r blue (W) wires inside the compres-					
	Do not short-circuit the terminals of the red, ye	ellow and blue wires.					
	Do not touch the terminals of the red, yellow a	nd blue wires when the power is on.					
3	Conduct forced cooling.						
4	When the output frequency has stabilized, measure the output current of each phase.						
	If then						
	the output currents of each phase are balanced the situation is normal.						
	one of the phases is out of balance replace outdoor PCB 1.						
	If the compressor stops before the output frequency stabilizes, measure the output voltage. Refer to 'Power transistor output voltage check' on page 3-65.						


output voltage check	Step	Action				
_	1	Remove the panels.				
	2	Connect a multi-meter between the red (U) and ure the voltage:	blue (W) wire on the compressor to meas-			
		Compressor Red Blue Yellow	Multi-meter AC voltage range			
		Do not short-circuit the terminals of the r	ed, yellow and blue wires. low and blue wires when the power is on.			
	3	Conduct forced cooling.				
	4	Measure the voltage between the operation start (when the fans start rotating) and operation halt caused by a current transformer fault (after 15 seconds).				
	5	Reset the power.				
	6	Connect the multi-meter between 2 the other wire-combinations.				
	7	Conduct forced cooling again to measure the other phase-combinations. Measure the voltage again to for other phase-combinations.				
	8					
	9	Compare the voltages U-V, U-W and V-W with the solid line below:				
		V abnormal 185 V 100 V abnormal abnormal start 15 seconds t				
		lf	then			
		the voltages are similar to the voltages on the solid line above	outdoor PCB 1 is normal.			
		one of the voltages is not similar to the volt- ages on the solid line above	check the cable between the power transistor and the compressor. If this is normal, replace outdoor PCB 1.			

Rectifier check

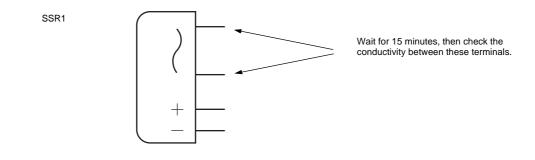
To check the rectifier, proceed as follows:



Negative (-) terminal of analog tester	Positive (+) terminal of analog tester	Normal resistance	Unacceptable resistance	
Positive terminal (+) for digital tester	Negative terminal (-) for digital tester	range	range	
Θ	÷	kΩ to MΩ	0 or ∞	
(+)	$\overline{\bigcirc}$	œ	0	
\odot	Θ	œ	0	
Θ	$\overline{\bigcirc}$	kΩ to MΩ	0 or ∞	

When the part is damaged, remove the terminal conductivity compound. Before installing a new rectifier, replace it by new compound.

Discharge pressure check



To check the solid state relay SSR1, proceed as follows:

Before checking, take following precautions in account:

- Make sure that the power is turned off.
- Make sure that the electric load is discharged from C1R and C2R.

5.4 Repair for Indoor Units

Air purifying filter

The air purifying filter (electrostatic filter) catches pollen and smoke particles as small as 0.01 micron through electrostatic charging. An activated carbon deodorizing filter in net shape is also mounted to absorb and minimize fine odour particles. The filter should be cleaned when the cleaning lamp flashes. In a dusty environment, it is recommended to clean them every 2 weeks.

Cleaning the air filters

To clean the air filters, proceed as follows:

Step	Action	Drawing
1	Stop the operation and turn the breaker off.	
2	Open the front grille by lifting the grill by the two tabs at both sides. Lift until you hear a click.	
3	Press the cleaning lamp reset button.	CLEANING LAMP Im RESET
4	Take out the filters by pushing them a little upwards and then downwards.	
5	Take out the air purifying filters to clean with water or a vacuum cleaner. If dust stays on the filters, wash them with a neutral detergent thinned with water. Afterwards, dry them in the shade.	
6	Put the air purifying filters back.	
7	Close the front grille at the 3 points indicated by the arrows.	

Replacing the air purifying filters

To replace the air purifying filters, proceed as follows:

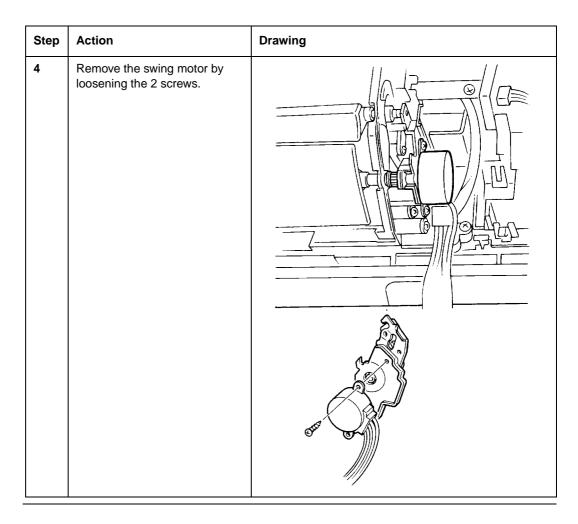
Step	Action	Drawing
1	Open the front grille by lifting the grill by the two tabs at both sides. Lift until you hear a click.	
2	Take out the air purifying filters by releasing the four claws.	
3	Detach the filter element.	
5	Attach a new one. Attach a new one. In a dusty environment, it is recommended to replace the filters every three months. To order an air filter with frame (2 pieces/1 set), refer to number KAF918A41 and an air filter with frame (4 pieces/2 sets), refer to number KAF918A42. Attach the air purifying filter.	
6	Put the air filters back.	
7	Close the front grille at the 3 points indicated by the arrows.	

To open or close the service cover or to change the settings at installation site, proceed as follows: Step Action Drawing 1 Remove the service cover using a screwdriver. 0 0 ō 2 Open the service cover. 3 Change the settings: Reminder timer is set to off at the factory. Filter sign can be reset. In a dusty environment, clean the filter once every two weeks to save energy. CLEANING LAMP Ŧ RESET

To open or close the service cover

Step	Action	Drawing	
1	Remove the screw of the service cover.		
2	Disengage the three catches of the electrical box.		
3	Remove the box cover.		
4	Disconnect connector S6 of indoor PCB 1. Do not hold the lead wires of the connector while disconnecting, but pull out the connector terminal.		

Removal of PCB


3

Step	Action	Drawing
5	Remove connector S7 on indoor PCB 1 and S1 on indoor PCB 2.	
6	Pull indoor PCB 1 forward to disconnect the remaining connectors.	

Step	Action	Drawing
7	Remove indoor PCB 2.	
8	Remove the lamp house and indoor PCB 3.	
9	Disengage hook of lamp house and open it upward.	

Step	Action	Drawing
10	Remove indoor PCB 4. Be sure to mount the indoor ambient temperature thermistor R1T in the right direction.	

Removal of swing motor	To remo	ve the swing motor, proceed as fol	lows:
motor	Step	Action	Drawing
	1	Open lamp house assembly.	
	2	Remove the 2 screws.	
	3	Remove the swing box assembly. The mounting screws for the swing box assembly are different in length from the screws of the swing motor.	

To remove the electrical box, proceed as follows: Step Action Drawing 1 Remove the indoor heat exchanger thermistor R2T. 2 Disconnect S1, S7 and S6 of the electrical box. Do not hold the lead wires of the connector while disconnecting, but pull out the connector terminal. 3 Remove the screw located at the bottom of the electrical box.

Removal of

electrical box

Step	Action	Drawing
4	Lift up the electrical box slightly and disengage the catch at the bottom side.	
5	Disengage the catch at the top side.	
6	Pull forward to remove the electrical box.	

Drawing Step Action 1 Remove the right side panel. 2 Remove the 3 screws. ()3 Remove the fan rotor and motor together from the unit. וסססק 4 Loosen the hexagon head 1111 m TJ screw on the fan rotor to remove the motor.

Removal of fan rotor and motor

3

To remove the fan rotor and motor, proceed as follows:

Step	Action	Drawing
5	Press the bearing with the fin- ger from the outside to remove it.	

5.5 Repair for Outdoor Units

Removal of To remove the propeller fan and motor, proceed as follows: propeller fan and motor Step Action Drawing 1 Remove the drip proof cover for the electrical parts. Do not break the cover. 2 Disconnect connector S70 of PCB 2. N Do not hold the lead wires of the connector while disconnecting, but pull out the connector terminal. 3 Remove the motor lead wire through the opening between the indoor heat exchanger temperature thermistor R3T and the electrical parts. 4 Remove the nut to take off the propeller fan.

Step	Action	Drawing
5	Remove the 2 screws to take off the fan motor.	
6	Disengage the catches that fas- ten the motor lead wires.	B B B B B B B B B B B B B B B B B B B
7	Remove motor.	

Step	Action	Drawing
1	Remove the 3 screws to take off the bell mouth.	
2	Disengage the catch at the top.	
3	Disconnect connector S80 of outdoor PCB 1. Do not hold the lead wires of the connector while disconnecting, but pull out the connector terminal.	TAB1

Removal of electrical parts

3

To remove the electrical parts, proceed as follows:

Step	Action	Drawing
4	Remove the lead wires from the clamps in the electrical box.	
5	Remove the discharge pipe thermistor R3T.	
6	Disconnect the grounding wire.	
7	Disconnect the connectors. Do not hold the lead wires of the connector while disconnecting, but pull out the connector terminal.	TAB1 TAB2 S40 S80 S40 S80 S90 S20

Step	Action	Drawing
8	Remove the screw that fas- tens the electrical box to the outdoor unit.	
9	Lift up the electrical parts box.	

Step Action Drawing 1 Remove the 2 fixing screws. SE Separate panel Reacto cover 5 2 Release the lead wires of the reactor. Wire clip 6

Removal of reactor

or To remove the reactor, proceed as follows;

Step	Action	Drawing
3	Lift up the partition plate.	
4	Remove the screw to take off the reactor cover.	
5	Remove the screw.	Reactor

Step	Action	Drawing
6	Slide the reactor to your side to remove it. The base plate of the reactor is inserted into the bottom of the frame slit.	
		J.

Part 4 Commissioning and Test Run

Introduction	Commissioning and test run are well known practices in service engineering. This part offers a systematic approach to test-run checks and test values which will guarantee a high quality installation and operation of the units. It is therefore recommended to read the chapters in this part with attention.		
What is in this part?	This parts contains the following chapters:		
	Торіс	See page	
	1 – Pre-Test Run Checks	page 4-3	
	2 – Test Run & Operation Data	page 4-7	

1 Pre-Test Run Checks

1.1 What Is in This Chapter

Introduction	To assure proper operation of the unit, this chapter explains how to check before running the unit.		
Overview	This chapter covers the following topics:		
Торіс		See page	
	1.2 - Checks for Test Runpage 41.3 - Setting the Remote Controllerpage 4		

1.2 Checks for Test Run

Installation check

A checklist is given below:

- The indoor and outdoor unit, the interconnection and the power supply cable are at least 1 m away from televisions or radios. This is to prevent interference from the air conditioner.
- Make sure that air is distributed on the entire room.
- The wall is strong enough to bear the weight of the indoor unit.
- The unit is not exposed to direct sunlight.
- There are no obstructions for air inlet and outlet.
- The wall hole to the outdoor side for the electric wiring, the refrigerant and drain piping can be made without problems in terms of building structure.

Checks before test run

A checklist is given below:

- Measure the voltage at the primary side of the safety breaker and check that it is 230 V ± 10%.
- Check that the liquid stop valve and the gas stop valve are fully open.
- Never use a power supply shared by another appliance.

Test run checks

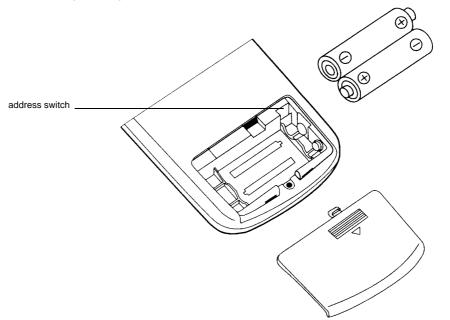
To execute a test run, make sure that following points are checked:

Checkpoints	Otherwise
Is the unit securely installed?	-
Are all air inlets and outlets of the indoor and outdoor units unobstructed?	Poor cooling. Poor heating.
Does the drain flow out smoothly?	Water leakage.
Is the piping adequately heat-insulated?	Water leakage.
Have the connections been checked for gas leakage?	Poor cooling. Poor heating.
Is the supply voltage conform to the specifications on the name plate?	Incorrect operation.
Is the earth wire installed according to the applicable local standard?	Dangerous if electric leakage occurs.
Is the earth wire earthed?	Damage of cables.
Are the cable sizes as specified?	Damage of cables.
Are the remote controller signals received by the unit?	No operation.

1.3 Setting the Remote Controller

Address switch

The address switch is used when one or two indoor units are installed in one room:


- Δ
- two indoor units in one room: address switch set to 2.

one indoor unit: address switch set to 1

Make sure to set the address switch on PCB 1 of the indoor unit. Refer to 'Main board PCB 1' on page 1-17.

Drawing

The following drawing shows the location of the address switch:

2 Test Run & Operation Data

2.1 What Is in This Chapter

Introduction

The following drawings and tables give an overview of the measurements that you can do. Use it as a guideline during commissioning.

For the location of the measurement points, we refer to the piping and wiring diagrams in Part 1.

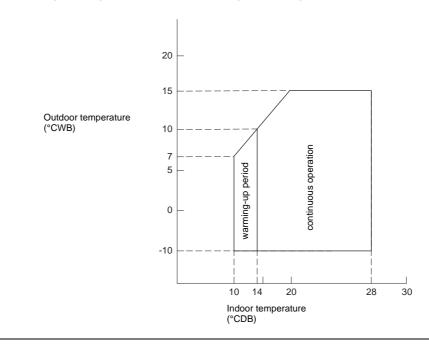
Overview

This chapter covers the following topics:

Торіс	See page
2.2 – General Operation Data	page 4-8
2.3 – Operation Range	page 4-9

2.2 General Operation Data

	Items	Operating modes	If the operation is out of this range:	
	Outdoor temperature	20 °C to 43 °C	 A safety device may stop the operation. 	
	Indoor temperature	21 °C to 32 °C	Condensation may occur on the indoor	
	Indoor humidity	80 %	and start dripping.	
During heating	During heating mode, th	e operating conditions m	ust be as follows:	
mode	Items	Operating modes	If the operation is out of this range:	
	Outdoor temperature	-10 °C to 21 °C	A safety device may stop the operation.	
	Indoor temperature	maximum 27 °C		
Ouring drying mode	During drying mode, the	operating conditions mu	st be as follows:	
During drying mode	During drying mode, the	operating conditions must	st be as follows:	
During drying mode	During drying mode, the	operating conditions mus	st be as follows: If the operation is out of this range:	
During drying mode				
During drying mode	Items	Operating modes	 If the operation is out of this range: A safety device may stop the operation. Condensation may occur on the indoor units 	
During drying mode	Items Outdoor temperature	Operating modes	 If the operation is out of this range: A safety device may stop the operation. 	
Recommended	Items Outdoor temperature Indoor temperature Indoor humidity The recommended temp	Operating modes 18 °C to 43 °C 18 °C to 32 °C 80 % perature settings are:	If the operation is out of this range: A safety device may stop the operation. Condensation may occur on the indoor uniand start dripping.	
	Items Outdoor temperature Indoor temperature Indoor humidity The recommended temp	Operating modes 18 °C to 43 °C 18 °C to 32 °C 80 % Perature settings are: n 7 °C difference from the	If the operation is out of this range: A safety device may stop the operation. Condensation may occur on the indoor uniand start dripping.	
During drying mode Recommended	Items Outdoor temperature Indoor temperature Indoor humidity The recommended temp	Operating modes 18 °C to 43 °C 18 °C to 32 °C 80 % perature settings are:	 If the operation is out of this range: A safety device may stop the operation Condensation may occur on the indoor and start dripping. 	


2.3 Operation Range

Conditions The graphics below are based on the following conditions: an equivalent piping length of 5 meters a level difference of 0 meters an high-speed airflow rate. **Cooling mode** The following drawing shows the operation range in cooling mode: 50 43 40 continuous operation pull-down period Outdoor temperature (°CDB) 30

Heating mode

The following drawing shows the operation range in heating mode:

21 10 0

10

15

20 23

Indoor temperature (°CWB) 28 30

2.4 Test Run from the Remote Controller

Introduction

You are able to test the air conditioner through the remote controller independent from the room temperature and the temperature setting (i.e. with the thermostat of the indoor unit bridged).

G

Carry out the test operation using the operation manual.

Test procedure

To run the test, proceed as follows:

Step	Action
1	Press the ON/OFF button of the remote controller to switch on the system.
2	 Press buttons UP (1),DOWN (2) and MODE (3) simultaneously. Press the MODE (3) button two times to start the test mode.
3	Wait until the test mode terminates (approximately 60 minutes) and switches automatically into normal mode.
4	Press the ON/OFF button to exit.

If the system is not used for a certain time, switch off the circuit breaker to avoid unnecessary power consumption.

Part 5 Maintenance

 Introduction
 Preventive maintenance should be set up for operation at maximum capacity or to avoid damage. The following chapters explain how to or when to maintain the units.

 What is in this part?
 This part contains the following chapters:

 Topic
 See page...

 1 Maintenance
 page 5-3

1 Maintenance

44

1.1 What Is in This Chapter

Introduction

This chapter explains some basic procedures that you can use for maintenance of the indoor units.

Make sure that the power supply is turned off and turn the breaker off.

Overview

This chapter covers the following topics:

Торіс	See page
1.2 – Maintenance for Indoor Units	page 5-4
1.3 – Maintenance for Outdoor Units	page 5-5
1.4 – General Maintenance	page 5-6

1.2 Maintenance for Indoor Units

Checks

To maintain the indoor unit, proceed as follows:

ltem	Check	If not,	Otherwise
Air filter	Check whether the air filter is clean.	Clean the filter and dry it with a vacuum cleaner.	A dirty filter results in poor capacity.
	The unit must be turned off when you change the filter.	Refer to 'Cleaning the air filters' on page 3-69.	
Indoor heat exchanger	Check whether the heat exchanger is dirty.	Clean with low pressure water and a vacuum cleaner.	A dirty heat exchanger results in poor capacity.
Electrical connection	Check whether all electrical connections are tightened properly.	Tighten them.	A loose connection can result in sparks.
Fan rotor	Check whether the rotor is clean.	Remove the rotor and clean with water.	A dirty rotor results in unbalance.
		Make sure it is dry.	
Noise level	Check whether there is no abnormal noise.	Find the problem, refer to 'Sounds' on page 3-4.	It can result in a higher noise level.
Drain	Check whether the drain is not blocked.	Unblock it.	A blocked drain results in water leakage.
Drain pump (if installed)	Check whether the operation of the drain pump is normal.	Repair it.	A faulty drain pump results in water leakage.

1.3 Maintenance for Outdoor Units

Checks

To maintain the indoor unit, proceed as follows:

ltem	Check	lf not,	Otherwise,
Outdoor heat exchanger	Check whether the heat exchanger is clean.	Clean with low pressure water and dry it with a vacuum cleaner.	A dirty heat exchanger results in poor capacity.
Electrical connection	Check whether all electrical connections are tightened properly.	Tighten them.	A loose connection can result in sparks.
Propeller	Check whether the propeller is in balance.	Change propeller.	An unbalanced propeller results in a higher noise level.
Casing	Check whether the casing is undamaged.	Repaint damaged parts.	Damage of casing leads to a rusty unit.
Insulation	Check whether the insulation is in normal shape.	Repair it.	A bad insulation results in poor outlook of the installa- tion.
Noise level	Check whether there is no abnormal noise .	Find the problem, refer to 'Sounds' on page 3-4.	It can result in a higher noise level.
Drain (heat pump)	Check whether the drain hole is free.	Remove dirt.	A blocked drain results in water leakage.
Drain pump (if installed)	Check whether the operation of the drain pump is normal.	Repair it.	A faulty drain pump results in water leakage.

1.4 General Maintenance

Check

To execute good maintenance, proceed as follows:

ltem	Check	lf not,	Otherwise
Pressure, voltage, current and temperature.	Compare with previous maintenance.	resolve the problem.	It can result in poor operation of the unit.

Appendix Drawings

Introduction

In order to find quickly the drawings inserted in this manual, appendix B offers a list with all the drawings.

Drawings table

The following table shows the page and description of all the drawings:

Call-outs	See page
Address switch	page 4-5
Automatic air flow control for cooling	page 2-19
Automatic air flow control for heating	page 2-19
Autoswing (Cooling mode)	page 2-16
Autoswing (Heating mode)	page 2-16
Cleaning the air filters	page 3-69
Cooling mode	page 4-9
Current transformer check	page 3-62
Dry mode	page 2-21
Emergency button	page 3-6
Functional diagram indoor unit	page 1-10
Functional diagram outdoor unit	page 1-11
Heating mode	page 4-9
Location of thermistors	page 2-4
Indoor unit, FTX25GV1NB, FTX35GV1NB	page 1-8
Indoor PCB 2 output voltage check (U4)	page 3-60
Inverter	page 2-8
Main board PCB 1 of indoor unit	page 1-17
Main board PCB 2 of indoor unit	page 1-18
Main board PCB 3 of indoor unit	page 1-18
Main board PCB 4 of indoor unit	page 1-19
Main board PCB 1of outdoor unit	page 1-20
Main board PCB 2 of outdoor unit	page 1-21

Call-outs	See page
Motor efficiency	page 2-12
Night set mode	page 2-21
To open or close the service cover	page 3-71
Outdoor unit RX25GV1NB, RX35GV1NB	page 1-8
Power supply waveform check	page 3-62
Power transistor output voltage check	page 3-65
Quick heating/ quick cooling	page 2-9
Rectifier check	page 3-67
Reluctance DC Motor	page 2-12
Principle of reluctance DC motor	page 2-13
Removal of electrical box	page 3-78
Removal of electrical parts	page 3-84
Removal of fan rotor and motor	page 3-80
Removal of reactor	page 3-87
Removal of swing motor	page 3-76
Removal of propeller fan and motor	page 3-82
Replacing the air purifying filters	page 3-70
Rotor structure	page 2-13
Service check	page 3-6
SSR1 check	page 3-68
Step Flow	page 2-17
Swing Compressor	page 2-11
swing-off start	page 2-17
swing-on start	page 2-18
Switch Box Layout	page 1-14
Thermistor resistance check (P4, J3, J6, H9)	page 3-61
Pre-heat operation	page 2-21
Wiring diagram FTX25GV1NB, FTX35GV1NB	page 1-15
Wiring diagram RX25GV1NB, RX35GV1NB	page 1-16

Index

This index is set up in three columns. In the first column you will find references to the item in general. In the second column you will find references to the indoor units and in the third column to the outdoor units.

Symbols	General index	FTX25GV1NB FTX35GV1NB	RX25GV1NB RX35GV1NB
 *			3-51, 3-53
*		,	3-55, 3-57
Α			
81			
85			
86			
abnormal functioning			
abnormal operation sound and vibration			1-11
additional checks		•••••	
additional control parameters			
address switch.			
air flow			
automatic control for cooling			
automatic control for heating			
air purifying filter			
cleaning			
maintenance			
working principle			
ambient temperature thermistor			
autoswing			

General index	FTX25GV1NB FTX35GV1NB	RX25GV1NB RX35GV1NB
С1R 1-14 С2R 1-14 СЧ	3-30	
(9		
capacitor voltage check		
casing maintenance		
capacitor voltage		
current transformer		
discharge pressure		
Hall IC		
installation condition		
installation 4-4		
PCB 2 output voltage		
power supply waveform		
power transistor output current		
power transistor output voltage		
power transistor	• • • • • • • • • • • • • • • • • • • •	
pre-test run		0.07
rectifier		
refrigerant system		
SSR1		
units	3-60, 3-62	
checks before test run	5-00, 5-02	
checks for test run		
circuit refrigeration		
cleaning air purifying filter		
closing service cover		
commisioning		
compressor		
function		
protection function		
start-up error		
working principle 2-11		
connectors		
PCB 1		
PCB 2		
PCB 3		
PCB 4		
current		
maintenance 5-6		
output error		
transformer check		
transformer error		
transformer		3-47

	General index	FTX25GV1NB FTX35GV1NB	RX25GV1NB RX35GV1NB
D			
defrost			
control	2-5, 2-14		
start conditions	2-14		
working conditions			
diffuser			
dimensions			
discharge pipe			
disconnected control			
temperature abnormality			
thermistor			
discharge pressure check			
discharge temperature control			
disconnected discharge pipe control.			
disconnected discharge thermistor con-			
drain			
maintenance			
maintenance			
drain pump			
maintenance			
maintenance		-	
dry mode			

Ε

E5			3-40 3-43
electrical box			
removing		3-78	
temperature rise			3-53
electrical connections			
maintenance		5-4	
maintenance			5-5
electrical parts removing			3-84
electrical specifications	1-7		
emergency operation	3-6		
expansion valve			
control	2-6		
feedback control	2-25		
initialization	2-24		
limits	2-24		
	2-24		
motor operated			1-11
open control	2-24		
sequence	2-24		

F	Ge	eneral index	FTX25GV1NB FTX35GV1NB	RX25GV1I RX35GV1I	
■ F3 fan					-42
Idli	control in cooling mode		3-28		-20 -20
	motor		3-80		-11 -20 5-5
	removing motor				-82 -82
	rotor maintenance		2-19		-20
fault o	speed modes			2	-20
			3-24, 3-31		-51
	81. 85. 86. C4. C9.				
	E5				-40 -43 -42 -47
	H9 ป3 ป6				-56 -56 -56
	L4 L5 P4 U0				-45 -49 -56 -36
fault i	U2				-38
fault i faulty	ndication		3-23		-35
faulty faulty	PCB PCB power supply ack control		••••••	3	-57
	iping connections			1	-11
forced forced forced	autoswing	2-16 2-16 2-16 2-15 2-15 2-15			
•	faulty	2-26			-18 -11

	ral index	FTX25GV1NB FTX35GV1NB	RX25GV1NB RX35GV1NB
		•••••	3-18
freeze-up prevention	·	2.26	
freeze-up prevention		3-26	
frequency	0.00		
control 2-4	<i>,</i>		
initial setting			
limits	2-9		
parameters	2-8		
principle	2-8		
functional			
control	2-3		
description	2-1		
diagram refrigeration circuit.	1-10		
diagram			
functioning abnormal			

G

gas detection fault		3-36
gas line stop valve		1-11
general functionality	2-3	
general outline	1-3	

Н

H8 H9		3-47 3-56
Hall IC check		0.00
heat exchanger		
function	1-10	
function		1-11
maintenance	5-4	
maintenance		5-5
thermistor		
thermistor		2-4
heat pump drain maintenance		5-5
heating operation stops		
high pressure		
control	3-26	
limitation heating 2-5, 2-23		
hot start function 2-21		

I

input overcurrent errorinstallation check		3-51
installation condition check		3-66
insufficient gas detection		3-38
insulation maintenance		5-5
inverter		
drawing	2-8	
features	2-9	
principle	2-8	

J

لال	3-56
J6	3-56

	General index	FTX25GV1NB FTX35GV1NB	RX25GV1NB RX35GV1NB
L			
L4 L5 layout piping			
location of thermistors			
louvre			0.00
low temperature control			
М			
main circuit overvoltage			
main PCB layoutmain PCB layout			1-20
maintenance general		1-17	
maintenance			
maintenance		-	
mist escape			
efficiency			
operated expansion valve			1-11
reluctance			
rotor structure			
working principle		1 10	
mumer			

Ν

night set mode	
no direct operation start	
no operation	
noise level	
maintenance 5-4	
maintenance	5-5
normal operating mode 2-7	

-	General index	FTX25GV1NB FTX35GV1NB	RX25GV1NB RX35GV1NB
0			
odour escapes			
off period			
opening service cover			
operating mode			
forced	2-7, 2-15		
main			
normal			
operating modes			
operation			
abnormal sound and vibration			
lamp			
stop through breaker			
stop			
operation data			
cooling mode			
drying mode			
general			
heating	4-8, 4-9		
main			
operation range			
cooling mode			
cooling			
heating mode			
operation space			
operation stops			
outlook drawing			
outlook drawing			
outlook drawing			
output current error			
output voltage check PCB 2			
overload activation			

Genera	al index	FTX25GV1NB FTX35GV1NB	RX25GV1NB RX35GV1NB
Р			
P3 P4 PCB 1			
connectors functionality		1-17	
check output voltage			
PCB 3 connectors PCB 4 connectors PCB fault		1-19	
PCB fault PCB removing PCB			3-57
PCB peak cut off piping			1-20
field connections layout		1-10	
main parts			
refrigeration circuit poor cooling or heating effect			
fault			3-62
power transistor check			
output current checkoutput voltage check			
pre-heat operation	2-21 5-6		
propeller maintenance			5-5

	General index	FTX25GV1NB FTX35GV1NB	RX25GV1NB RX35GV1NB
R			
R1T		2-4	
R1T			
R2T			
R2T			
R3T			
R4T			0.45
radiation fin temperature rise			
reactor removing			
rectifier check			
refrigerant distribution control			
refrigerant system check			
refrigeration circuit			
functional diagram	1-10		
main parts			
main parts			
reluctance DC motor	2-12		
remote controller			
setting			
test run	4-10		
removing			
electrical box			0.04
electrical parts			
fan motor			2.02
fan motor			
PCB			
propeller			
reactor			
swing motor			
repair			
repair			
repair			
replacing air purifying filter		3-70	
resistance check thermistor			
rotor structure	2-13		

S

•			
safeties	3-6		
service check	3-6		
service cover			
closing		3-71	
opening		3-71	
		5-71	
setting remote controller			
signal transmission error		3-33	
sounds 3-4,	3-15		
specifications			
electrical	1-7		
technical	1-4		
SSR1 check			3-68
SSR1	1-14		
steam escape			3-4
step flow			01
•			
swing compressor		2.76	
swing motor removing		3-76	
switch box			
	2-26		
layout	1-14		
thermistor	2-4		

	General index	FTX25GV1NB FTX35GV1NB	RX25GV1NB RX35GV1NB
Т			
technical specifications	1-4		
temperature			
maintenance	5-6		
recommended setting	4-8		
test run			
checks	4-4		
from remote controller			
main	4-7		
thermistor			
abnormality			
abnormality			
ambient temperature			
ambient temperature			
discharge pipe			
functions			
heat exchanger			
heat exchanger			
location			
resistance check			
switch box			
transmitting-receiving circuit			
TRM1			
troubleshooting	3-1, 3-3		

U

UO	
U2	
υч	

V

valve		
	expansion	1-11
	gas line stop	1-11
voltag	ge	
	low	3-38
	maintenance	

W

water escape	3-4
wide-angle flap 2-16	
wiring	
diagram	
diagram	1-16
layout 1-13	